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Abstract 

Background:  In the lower Mekong Basin and coastal zones of Southern Vietnam, forests dominated by the genus 
Melaleuca have two notable features: most have been substantially disturbed by human activity and can now be 
considered as degraded forests; and most are subject to acute pressures from climate change, particularly in regards 
to changes in the hydrological and sodicity properties of forest soil.

Results:  Data was collected and analyzed from five typical Melaleuca stands including: (1) primary Melaleuca forests 
on sandy soil (VS1); (2) regenerating Melaleuca forests on sandy soil (VS2); (3) degraded secondary Melaleuca forests 
on clay soil with peat (VS3); (4) regenerating Melaleuca forests on clay soil with peat (VS4); and (5) regenerating Mela-
leuca forests on clay soil without peat (VS5). Carbon densities of VS1, VS2, VS3, VS4, and VS5 were found to be 275.98, 
159.36, 784.68, 544.28, and 246.96 tC/ha, respectively. The exchangeable sodium percentage of Melaleuca forests on 
sandy soil showed high sodicity, while those on clay soil varied from low to moderate sodicity.

Conclusions:  This paper presents the results of an assessment of the carbon stocks and sodicity tolerance of natural 
Melaleuca cajuputi communities in Southern Vietnam, in order to gather better information to support the improved 
management of forests in the region. The results provide important information for the future sustainable manage-
ment of Melaleuca forests in Vietnam, particularly in regards to forest carbon conservation initiatives and the potential 
of Melaleuca species for reforestation initiatives on degraded sites with highly sodic soils.
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Background
Numerous studies have shown that tropical wetlands typ-
ically contain large carbon stocks [1–7]. Protecting and 
restoring tropical coastal wetlands is considered a critical 
part of how society adapts to and mitigates global climate 
change [8].

Large areas of Melaleuca forests in Vietnam are dis-
turbed ecosystems that experience extreme conditions, 
and are associated with floods and/or sodic soils. They 
mostly occur in the lower Mekong Basin, which has been 
severely impacted by climate change [9–12]. Little is 
known about the carbon sequestration potential of dis-
turbed Melaleuca forests in Australasia and South-East 

Asia where the genus occurs. Carbon stocks of Mela-
leuca forests are generally considered to be low (i.e. about 
27.8 tC/ha estimated by Australian Government Office 
[13]). However, Tran et  al. [14] suggested that this has 
been grossly under-estimated and that Melaleuca caju-
puti forests on peatland soils in Vietnam, Indonesia and 
Malaysia are likely to have a high potential for carbon 
sequestration.

Sea level rise has significant impacts on the coastal 
zone, where soils will become saline and/or highly sodic 
[15]. Sodic soils are distinguished by an excessively high 
concentration of Sodium (Na) in their cation exchange 
complex. High sodicity causes soil instability due to poor 
physical and chemical properties, which affects plant 
growth and can have a more significant impact than 
excessive salinity growth [16, 17]. Sodicity impacts plant 
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growth in three ways, including: soil dispersion, specific 
ion effects, and nutritional imbalance in plants [18, 19]. 
Excessive sodium concentrations cause clay dispersion 
which is the primary physical effect of the sodic soil. 
Sodium-induced dispersion can reduce water infiltration, 
decrease hydraulic conductivity, and increase soil sur-
face crusting that strongly affect roots such as root pen-
etration, root development, and blocking plant uptake of 
moisture and nutrients [19].

Except for those containing mangroves and other halo-
phytes, most ecosystems are severely affected by salinity 
and/or sodicity. A few studies have examined saline-sodic 
soils in shrimp farming areas in the coastal regions 
of Vietnam (i.e. ECe  =  29.25 dS/m and exchangeable 
sodium percentage ranged from 9.63 to 72.07%, which 
had a big impact on plant cultivation systems [20]).

Several studies (such as Dunn et al. [21], Niknam and 
McComb [22], van der Moezel et al. [23, 24]) have exam-
ined the tolerance of woody species such as Acacia, 
Eucalyptus, Melaleuca, and Casuarina species to salinity 
and/or sodicity, but more research is required. This paper 
examines the carbon stocks of disturbed Melaleuca for-
ests and the sodicity tolerance of M. cajuputi forests in 
Southern Vietnam.

Results and discussion
Characteristics of the typical Melaleuca forests in the study 
areas
The major characteristics of five Melaleuca forests types 
examined include standing trees, an understory, and sat-
urated conditions (Table 1). The variation in these char-
acteristics not only distinguishes the different stands but 
also improves understanding of their carbon stocks.

The stand densities of the five typical Melaleuca forest 
types varied considerably: they were 2,330, 10,950, 980, 
9,833, and 6,867 trees/ha for VS1, VS2, VS3, VS4, and 
VS5, respectively (Table  1). Within each study site, the 
tree densities of regenerating forests (VS2, VS4, and VS5) 
were significantly higher than primary forests (VS1) and 
secondary forests (VS2) (Figure 1a). The increased stand 
densities of types VS2, VS4, and VS5 were mostly com-
prised of trees with a diameter at breast height (DBH) 
<10  cm. In contrast, VS1 was dominated by trees with 
DBH < 20 cm (accounting for 84.3%), with the balance of 
trees having a DBH ≥ 20 cm (including 4.2% of trees with 
DBH ≥  30), while VS3 was mostly dominated by trees 
with a 5 cm ≤ DBH < 20 cm (accounting for 96%), with 
the balance having a 20 cm ≤ DBH < 40 cm (accounting 
for 4%) (Table 1).

Average DBH of all stand classes were 16.71, 5.36, 
12.93, 5.88, and 6.20 for VS1, VS2, VS3, VS4, and VS5, 
respectively (Figure 1b). There was a significant difference 
in DBH in the five Melaleuca forest types (χ2 = 446.86, 

p = 2.2e−16). However, post hoc test shows that there is 
no significant difference in tree DBH between VS1 and 
VS3, and between VS2, VS4, and VS5 (Additional file 1: 
2b).

Average total height of all stand classes were 14.69, 
7.11, 9.69, 5.68, and 7.50 m for VS1, VS2, VS3, VS4, and 
VS5, respectively (Figure 1c). There was a significant dif-
ference in the total height of the five Melaleuca forest 
types (χ2 =  11.616, p =  0.0088) (Additional file  1: 2c). 
Furthermore, the tree density of the five forest types 
was generally very high, especially of VS2, VS4 and VS5 
(over 2,000 individuals/ha), which can contribute to a 
large biomass. The basal areas shown in Figure  1d fur-
ther confirm the potential high biomass of VS2, VS4 and 
VS5 (BA = 28.41, 30.14, and 23.14 m2/ha, respectively). 
Furthermore, the basal area of VS1 is significantly greater 
than VS3, accounting for 41.45 and 10.29 m2/ha, respec-
tively (F = 3.341, p = 0.0423) (Additional file 1: 2d).

Different species were found in the understorey of the 
various Melaleuca forest types. Key species for VS1 and 
VS2 include Leptocarpus sp., Lepironia sp., Hanguana 
sp., Eleocharis sp., Euriocaulon sp., Xyris sp., Steno-
chlaena sp., Melastoma sp., and Imperata cylindrica. 
For VS3, VS4, VS5, the following species dominate the 
understorey: Stenochlaenapalustris sp., Phragmitesval-
latoria sp., Melastomadodecandrum sp., Diplaziumescu-
lentum sp., Lygodiumscandens sp., Aspleniumnidus sp., 
Scleriasumatrensis, Cassia tora, Paederiafoetida sp., Fla-
gellariaindica sp., and Cayratiatrifolia sp. (Table 1).

Carbon stocks of Melaleuca forests
The carbon densities of five typical Melaleuca forests in 
Southern Vietnam were 275.98, 159.36, 784.68, 544.28, 
and 246.96 tC/ha, respectively, for primary Melaleuca 
forests on sandy soil (VS1), regenerating Melaleuca for-
ests on sandy soil (VS2), degraded secondary Melaleuca 
forests on clay soil with peat (VS3), regenerating Mela-
leuca forests on clay soil with peat (VS4), and regener-
ating Melaleuca forests on clay soil without peat (VS5) 
(Figure 2a). There is significant difference in carbon den-
sities between the forest types (χ2 = 10.419, p = 0.0339) 
(Additional file 1: 2e). On sandy soils, the carbon density 
of VS1 was significantly greater (1.7 times) than VS2. The 
carbon density of Melaleuca forests on clay soil with peat 
was still high after disturbance (VS3 was 1.4 times higher 
than VS4). The carbon density of VS5 was lower than 
VS3 and VS4 because there was no peat layer.

On sandy soil, the stands and soil layers were the high-
est contributors to carbon density of VS1 (account-
ing for 41.34 and 29.11%, respectively), while VS2 has a 
high contribution from the soil layer, then stands (soil 
and stand categories contribute for carbon density of 
56.15 and 28.53%, respectively) (Figure 2b). However, in 
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the peat land, the greatest contribution of carbon den-
sities for VS3 and VS4 are the peat and soil categories 
(accounting for 61.41%, 22.10% of VS3, and 57.66, and 
16.72% of VS4, respectively). Separately, carbon den-
sity of VS5 is mostly linked to the soil, deadwood, and 
stand categories (accounting for 33.54, 32.16, and 14.66%, 
respectively) (Figure 2b).

Variability of carbon stocks in different types of Melaleuca 
forests
This study investigated the carbon stocks of six categories: 
stands, understory, deadwood, litter, root, and soil for five 
types of Melaleuca forests in Southern Vietnam (Figure 3).

The carbon densities of stands of the various for-
est types were 110.67, 44.27, 22.79, 48.25, and 37.20 tC/
ha for VS1, VS2, VS3, VS4, and VS5, respectively (Fig-
ure  3a). There was a significant difference in stand car-
bon density between the forest types (χ2  =  48.3184, 
p = 8.1e−10) (Additional file 1: 2f ). The carbon density of 
the stand VS1 is the highest and is 2.5, 4.9, 2.3, and 3.0 
times higher than VS2, VS3, VS4, and VS5. Surprisingly, 
there is no statistical difference in stand carbon densities 
between secondary forests (VS3) and regenerating forests 
(VS2, VS4 and VS5) (Additional file 1: 2f ). These carbon 
stocks were lower those from other studies of differ-
ent forests (e.g. 144 tC/ha for Asian tropical forests [25]; 
200.23 tC/ha and 92.34 tC/ha of primary and secondary 

swamp forests in Indonesia (involving Melaleuca vegeta-
tion), respectively [26]).

The carbon densities of the understory in the Mela-
leuca forests of Vietnam were 2.45, 2.48, 6.23, 1.65, and 
5.27 tC/ha for VS1, VS2, VS3, VS4, and VS5, respectively 
(Figure 3b). There was a statistically significant difference 
in understory carbon density between the forest types 
(χ2 = 30.7189, p = 3.49e−6) (Additional file 1: 2g). How-
ever, there was no significant difference in understory 
carbon density between Melaleuca forest types on sandy 
soils (VS1 and VS2). On clay soils, the understory carbon 
densities of VS3 and VS5 were significantly higher than 
VS4.

The carbon densities of deadwood in the forest types 
were 30.47, 0, 67.90, 45.06, and 74.59 tC/ha for VS1, VS2, 
VS3, VS4, and VS5, respectively (Figure  3c). There was 
a statistically significant difference in deadwood carbon 
density between the Melaleuca forest types (χ2 = 3.0978, 
p  =  0.5416), but pairwise comparisons show no sig-
nificant differences (Additional file  1: 2  h). Surprisingly, 
deadwood was not present in regenerating forests in the 
study sites on Phu Quoc Island. This is probably due to 
frequent forests fires and/or fuelwood collection by peo-
ple associated crop cultivation.

Some of the carbon stock of Melaleuca forests is con-
tributed by layers of coarse and fine litter. The carbon 
densities of the total litter layer of the forest types were 

Figure 1  Traits of five Melaleuca forest types in the study areas: a stand densities, b diameter at bread height, c total height, and d basal areas.
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31.03, 14.45, 23.76, 57.35, and 39.23 tC/ha for VS1, VS2, 
VS3, VS4, and VS, respectively (Figure 3d). There was a 
statistically significant difference in overall litter car-
bon density between these forest types (χ2  =  1.5619, 
p = 0.08156), but pairwise comparisons show no signifi-
cant differences (Additional file 1: 2i).

The carbon densities from peat of the Melaleuca for-
ests were 479.62 and 294.57 tC/ha for secondary forests 
(VS3) and regenerating forests (VS4), respectively (Fig-
ure 3e). The carbon density from peat of VS3 is signifi-
cantly greater than that of VS4 (χ2 = 5.2359, p = 0.0221) 
(Additional file  1: 2j). This is almost certainly due to 

a 

b 

800

700

600

500

400

300

200

100

0

100

200

300

M
ea

n 
ca

rb
on

 d
en

si
ty

 (t
C

/h
a)

Types of Melaleuca forests

peat root soil litter deadwood understorey stand

0

20

40

60

80

100

120

VS1 VS2 VS3 VS4 VS5

VS1 VS2 VS3 VS4 VS5

D
is

tri
bu

tio
n 

of
 c

ar
bo

n 
de

ns
iti

es
 (%

)

Types of Melaleuca forests

soil root peat litter deadwood understorey stand
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peat being partly burned in the regenerating forest by 
the severe fire of 2002. In U Minh Thuong National 
Park, peat comprises the top soil layer, with a deep layer 

of clay below. The depth of the peat layer ranged from 
15 to 62 cm in 18 soil cores, and the peat bulk density 
ranged from 0.19 to 0.3. The depths of the peat layer in 

Figure 3  Carbon densities of carbon stock categories of five Melaleuca forests types in the study areas: a mean stand carbon density, b mean 
understorey carbon density, c mean deadwood carbon density, d mean litter carbon density, e mean peat carbon density, f mean root carbon 
density, and g mean soil organic carbon density.
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this study were much thinner than in other forests (i.e. 
primary peat layer in U Minh Thuong was over 90  cm 
depth [27], and the thick peat layer in U Minh Ha was 
over 120 cm depth [28]).

The carbon densities of roots in the Melaleuca for-
ests were 22.75, 16.97, 11.97, 6.99, and 8.35 tC/ha for 
VS1, VS2, VS3, VS4, and VS5, respectively (Figure  3f ). 
There was a statistically significant difference in root 
carbon density between the forest types (χ2  =  22.437, 
p = 0.00016). The carbon densities of roots in Melaleuca 
forests in sandy soil were higher than those in clay soil, in 
particular, the root carbon density of VS2 was significant 
higher than that of VS4 (Additional file 1: 2k).

Organic soil carbon densities to a 30  cm depth in 
the study areas were 75.81, 89.22, 178.93, 93.94, and 
83.58  tC/ha for VS1, VS2, VS3, VS4, and VS5, respec-
tively (Figure 3 g). There was a statistically significant dif-
ference in organic soil carbon density between the forest 
types (χ2 = 1.7333, p = 0.230), but pairwise comparisons 
showed no significant differences (Additional file 1: 2k). 
These results are consistent with those of other studies 
of soil carbon stocks in wetlands (e.g. organic soil car-
bon stocks in swamp forests in Indonesia (with Mela-
leuca vegetation) were 106.00 and 135.63 tC/ha in the top 
30  cm of soil of primary and secondary forests, respec-
tively [29]).

Overall, the carbon density of Melaleuca forests on 
sandy soil in Southern Vietnam ranged from 159.36  tC/
ha for regenerating forests to 275.98  tC/ha for primary 
forests. The carbon densities of forests on clay soil ranged 
from 246.96  tC/ha for regenerating forests without peat 
to 784.68  tC/ha of secondary forests with peat. Com-
pared with the carbon stocks of other forests on peatland 
(e.g. the carbon density of mangrove forests in the Indo-
Pacific region was 1,030 tC/ha [30]), the carbon density of 
disturbed Melaleuca forests on the peatland of Southern 
Vietnam is about one half, but the results are consistent 
with other studies on peat swamp forests (e.g. the carbon 
density of undisturbed swamp forests in South-East Asia 
ranged from 182 to 306 tC/ha [31]). Despite this, Mela-
leuca forests in the peatlands of Vietnam still have high 

potential as carbon stores. The case of U Minh Thuong 
National Park is an example. The total carbon stock of 
8,038 ha of Melaleuca forests in the park is about 2.69 M 
tC (Table 2), which is equivalent 9.43 M tCO2e. Further-
more, there were 8,576 hectares of Melaleuca forested 
peatland in U Minh Ha National Park that have peat lay-
ers ranging from 40 cm to over 120 cm deep [32], which 
provides an even higher potential carbon store.

Sodicity tolerance of Melaleuca cajuputi forests toward the 
adaptation to global climate change
Sea-level rise is a consequence of global climate change 
that will severely affect coastal and wetland ecosystems. 
Melaleuca forests are largely located in coastal and wet-
land areas that may be affected by climate change [33], 
so the risk of salinization of the region will increase. 
Salinity in soils can damage woody plant species by 
stunting buds, reducing leaf size and causing necroses 
in buds, roots, leaf margins and shoot tips [34]. Salinity 
can also inhibit seed germination, and can even kill non-
halophytic species [35]. Both vegetative and reproduc-
tive growth of woody species are also reduced by high 
concentrations of sodium chloride in soil [35, 36]. The 
combination of flooding and salinity can create a more 
pronounced effect on growth and survival of plants than 
either stress alone [35]. High concentrations of sodium 
can affect the structure of sodic soils [37–39]. In contrast, 
low sodium concentration, soil structure is not affected 
by salinity in saline soil [40]. Sodicity and salinity always 
occur together and coming to have negative impacts on 
soil properties and plants [38, 41], but sodic soils may be 
either non-saline or saline [17].

The lower Mekong Basin and coastal regions of south-
ern Vietnam are highly vulnerable to global climate 
change impacts [9, 33, 42, 43]. Most of Vietnam’s Mela-
leuca forests occur in these areas and will be affected 
projected sea-level rise. Fortunately, this study has shown 
that M. cajuputi has the ability to tolerant increase in 
sodic soils.

About 28 soil samples collected from Melaleuca for-
ests in Southern Vietnam were examined and all were 

Table 2  Potential carbon storage in Melaleuca peat-swamp forests: case in U Minh Thuong National Park

The areas of Melaleuca forests in U Minh Thuong National Park are taken from a Vietnam Environment Protection Agency report [48].

Land cover type Area (ha) Carbon density (tC/ha) Carbon storage tC

Mature Melaleuca forests on clay soil without peat 1,765 305.06 538,431

Mature Melaleuca forests on clay soil with peat 601 784.68 471,593

Regenerating Melaleuca on clay soil with peat 2,106 544.28 1,146,254

Regenerating Melaleuca on clay soil without peat 1,106 246.96 273,138

Others (open water, reeds and grasses) 2,460 107.91 265,459

Total 8,038 2,694,874
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shown to be sodic (Table  3). While the exchangeable 
sodium percentage (ESP) of soil layers of Melaleuca for-
ests on clay soil (VS3, VS4, and VS5) ranges from low to 
moderate sodicity, those of Melaleuca forests on sandy 
soil (VS1 and VS2) were significantly higher, particularly 
VS1, which had an ESP of up to 39.78% in soil taken from 
depths of 10–30  cm (Table  3). This indicates that both 
mature and young M. cajuputi forests have a high toler-
ance of sodic soils. Furthermore, M. cajuputi seeds can 
germinate and grow in highly sodic soil [e.g. M. cajuputi 
in forest type VS2 was able to grow in highly sodic soil 
with ESP up to 21.16% in the top 0–10 cm (Table 3)].

With the exception of mangroves, few woody spe-
cies can tolerate saline and/or sodic soils. Many woody 
species have been examined for their tolerance of salin-
ity and/or sodicity. For example, Eucalyptus, Melaleuca, 
Acacia, Casuarina [21–24], Grevillea robusta, Lophoste-
mon confertus and Pinus caribea [44], and Moringa 
olifera [45] have been examined and their tolerance 
to salinity assessed in the field and in glasshouses. In 
extremely saline soils in Australia, Niknam and McComb 
[22] suggested that the land care benefit of establishing 
species such as Melaleuca or Casuarina is more impor-
tant than their commercial value. As well as the land care 
value, this study has shown that M. cajuputi forests in 
Vietnam can adapt to climate change through their tol-
erance to sodicity, and other harsh conditions [33], and 
can help to mitigate climate change through their carbon 
storage abilities.

Conclusion
By undertaking original field data, this study examined 
the carbon sequestration potential of five types of Mel-
aleuca forests including ‘Primary Melaleuca forests on 
sandy soil’ (VS1), ‘Regenerating Melaleuca forests on 
sandy soil’ (VS2), ‘Degraded secondary Melaleuca forests 
on clay soil with peat’ (VS3), ‘Regenerating Melaleuca 
forests on clay soil with peat’ (VS4), and ‘Regenerating 
Melaleuca forests on clay soil without peat’ (VS5). The 
study also assessed the sodicity tolerance of M. cajuputi 
forests in coastal and wetland regions of Vietnam.

The carbon densities of VS1, VS2, VS3, VS4, and VS5 
were 275.98 (±38.62) tC/ha, 159.36 (±21.01) tC/ha, 
784.68 (±54.72) tC/ha, 544.28 (±56.26) tC/ha, and 246.96 
(±27.56) tC/ha, respectively. Most carbon stocks were 
contributed from the soil (including peat) and stands.

The exchangeable sodium percentage (ESP) of soil 
from Melaleuca forests on clay soil (VS3, VS4, and VS5) 
ranged from low to moderate sodicity, but those from 
Melaleuca forests on sandy soil (VS1 and VS2) were 
highly sodic.

The results provide important information for the 
future sustainable management of Melaleuca forests in 

Vietnam, particularly in regards to forest carbon conser-
vation initiatives and the potential of Melaleuca species 
for reforestation initiatives on degraded sites with highly 
sodic soils. In Vietnam, forest carbon conservation initia-
tives such as REDD+ have hereto, in our view, not placed 
appropriate priority or consideration on the protection of 
carbon stocks of Melaleuca forests. The results presented 
in this paper suggest that Melaleuca forests in Vietnam, 
particularly those on peatland areas, hold globally signifi-
cant carbon stocks—arguably greater than those found 
in upland rainforest ecosystems, which have so far been 
given higher priority in REDD+ planning in Vietnam. 
Furthermore, the results presented in this paper suggest 
that some Melaleuca forest species in Vietnam, particu-
larly those on sandy soils, exhibit a tolerance for highly 
sodic soils. This suggests that those species might be 
useful in reforestation initiatives on degraded sites with 
highly sodic soils. As degradation pressures including cli-
mate change continue to alter the hydrological features of 
soil systems in areas such as the Mekong Delta in Viet-
nam, and the sodicity of soils in some areas increases, 
Melaleuca species could offer a useful option for refor-
estation and rehabilitation initiatives.

The results in this research provide further scientific 
information to support better Melaleuca ecosystem man-
agement. The results should help policy makers make 
better decisions in an era of global change. The results 
have particular relevance for the application of REED+ in 
the Southeast Asia.

Methods
Study sites and disturbance context
Melaleuca cajuputi is naturally distributed as scattered 
shrub populations along the coastal regions in the mid-
dle Provinces and up to the Northern hilly regions, and 
as tall forests in the Mekong Delta of Vietnam [46]. Thus, 
the study focussed on the sites in Southern Vietnam 
(involving Mekong Delta). The study investigated two 
sites: the Phu Quoc National Park and U Minh Thuong 
National Park, which both contain extensive Melaleuca 
forests in coastal wetlands (Figure 4). A total of 14 plots 
were randomly selected for carbon storage assessment, 
covering five types of Melaleuca stands: ‘Primary Mela-
leuca forests on sandy soil’(VS1), 4 plots; ‘Regenerating 
Melaleuca forests on sandy soil’ (VS2), 2 plots; ‘Degraded 
secondary Melaleuca forests on clay soil with peat’ (VS3), 
2 plots; ‘Regenerating Melaleuca forests on clay soil with 
peat’ (VS4), 3 plots; and ‘Regenerating Melaleuca forests 
on clay soil without peat’ (VS5), 3 plots.

Phu Quoc National Park is located on the north-
ern Phu Quoc Island of Vietnam (at N 10°12′07″–N 
10°27′02″, E 103°50′04″–E 104°04′40″) (Figure  4). Mela-
leuca forest areas cover 1,667.50 ha out of the total area 
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of 28,496.90 ha. These Melaleuca forests naturally occur 
on lowland regions of the island where they are season-
ally inundated and/or permanent saturated, and also on 
permanent sand bars where no inundation occurs [47]. 
The rest areas of the park are hilly and mountainous 
forests. Two Melaleuca forest types were found in the 
park: primary Melaleuca forest (VS1); and regenerating 
Melaleuca forest (VS2). Before the park was established 
in 2001, key disturbance included forest fires and human 
intrusion for crop cultivation. The regenerating Mela-
leuca forests were up to 10–12  years of age at the time 
this study was conducted.

U Minh Thuong National Park is located in the Kien 
Giang Province (at N 9° 31′–N 9° 39′, E 105° 03′–E 105° 
07′) (Figure 4). Melaleuca forest on swamp peatland is 
an endemic ecosystem in the lower Mekong Basin of 
Vietnam. The core area of the park is 8,038 ha, which 
is surrounded by a buffer zone of 13,069 ha. Here, the 
key disturbance is fire, with the last major fire occur-
ring in April 2002, which burnt the primary vegetation 
as well as the peat soil. The Vietnamese Environ-
ment Protection Agency [48] reported that 3,212 hec-
tares of Melaleuca forests was almost destroyed, so a 
canal system was built as a key management solution 

to increase water inundation of the forest to prevent 
fires. Currently, there are three Melaleuca forest types 
in U Minh Thuong National Park: VS3, VS4, and VS5. 
At the time of this study, the VS4 and VS5 areas were 
up to 10 years old.

Field sampling and data collection
The major plots were set out as 500  m2 quadrats 
(20 m × 25 m), and all trees with a DBH ≥ 10 cm were 
measured and recorded. Sub-plots also were set out as 
100 m2 quadrats (20 m × 5 m) within the major plots to 
measure all trees with DBH < 10 cm and a total height of 
>1.3 m (modified from Van et al. [49]). Data on DBH, alive 
or dead, and height were recorded for all standing trees.

Deadwood (dead fallen trees) with a diameter ≥10 cm 
were measured within the major plots (500  m2), while 
deadwood with 5 cm ≤ diameter < 10 cm were measured 
within the sub-plots (100 m2). Diameters at both ends of 
the trunk (D1 and D2), length (if ≥50 cm length), and the 
decay classes (involved sound, intermediate, and rotten 
[50, 51]) were recorded for all deadwood.

Seventy random quadrats (1  m ×  1  m) were located 
in the main plots to collect and record the ‘fresh weight’ 
of the understory. Samples of all species from the 

Figure 4  The study locations in Southern Vietnam: Phu Quoc National Park and U Minh Thuong National Park. Source: map from Department of 
Information Technology, Vietnam. Image Landsat from Google Earth (free version).
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understory were collected in each major plot and taken 
back to the Vietnam Forestry University laboratory for 
drying.

Seventy random coarse litter samples and seventy random 
fine litter samples were collected in the major plots. The 
fresh weight of each litter sample was recorded. Each litter 
type (coarse litter and fine litter) collected in every major 
plot were well mixed and taken to the laboratory for drying.

Two soil samples, one from the upper (0–10 cm) soil layer 
and one from the lower (10–30 cm) soil layer, were taken 
from each of 14 plots, giving a total of 28 soil samples. The 
28 soil samples were taken back to the National Institute of 
Agricultural Planning and Projection laboratory for further 
analysis. Various soil chemical properties of the 28 samples 
were tested including: pHKCl, total C, total N, Ca2+, Mg2+, 
Na+, K+, Al3+, and Fe3+. Twenty-eight duplicate soil sam-
ples were collected and analyzed for bulk density.

Sample analysis
Each understory and litter sample was divided into three 
sub-samples and dried in a drying oven at 60°C to meas-
ure the moisture content, based on the Eq. (1) below:

where Rmoist  =  moist ratio [0:1], Wfi  =  fresh weight 
of sub-sample i, Wdi  =  dry weight of sub-sample i, 
n =  number of sub-samples. The scales used to weight 
sub-samples were accurate to ±0.01 g.

Total organic carbon (C%) was measured using the 
Walkley–Black method, which is commonly used to 
examine soil organic carbon via oxidation with K2Cr2O7 
[52, 53]. Total nitrogen was measured using the Kjeldahl 
method, which is the standard way to determine the total 
organic  nitrogen content of soil [54]. A standard bulk 
density test was used to analyze all soil bulk samples in a 
dryven. Bulk density was calculated using Eq. (2):

where BD =  the bulk density of the oven-dry soil sam-
ple (g/cm3), Ms = the oven dry-mass of the soil sample 
(gram), V = the volume of the ring sample (cm3).

Exchangeable sodium percentage (ESP) was calculated 
using Eq. (3) [55–57], and classified with four sodic levels 
as non-sodic soil (ESP < 6), low sodic soil (ESP = 6–10), 
moderately sodic soil (ESP =  10–15), and highly sodic 
soil (ESP > 15) [55–57].

(1)Rmoist =

∑n
i=1

Wfi−Wdi

Wfi

n
.

(2)BD =
Ms

V
.

(3)ESP =
Na+

Σ
[

Na+
][

K+
][

Mg2+
][

Ca2+
] × 100.

Basal area (BA) was calculated with Eq.  (4) (modified 
from Jonson and Freudenberger [58]):

where BA  =  basal area (m2/ha), DBHi  =  diameter at 
bread height of tree i (cm), i = stand individual (i = [1:n]), 
n =  number of trees of sample plot, Splot =  area of the 
sample plot (m2).

Biomass allometric computation
Nine allometric equations, which are most common 
way to measure forest carbon stocks, were applied 
to calculate the above-ground and root biomass of 
the stands (Table  4). The selected allometric equa-
tions were tested for statistical significance using the 
R Statistic Program (Additional file 1: 1). Using these 
equations, the average biomass was analyzed for five 
typical Melaleuca stands (VS1, VS2, VS3, VS4, and 
VS5). To convert from fresh to dry biomass, a mois-
ture rate of 0.5 was applied as suggested by Van et al. 
[49] for the allometric equation of Finlayson et  al. 
[59]. According to the Global Wood Density Data-
base, the density of M. cajuputi timber ranges from 
0.6 to 0.87 g/cm3 [60], so 0.6 g/cm3 was applied for the 
above-ground biomass allometric equation of Chave 
et al. [61].

The fallen deadwood biomass were calculated using 
Eq. (5) ([62], p 12):

where B = biomass (kg), r = ½ diameter (cm), L = length 
(m), and δ = wood density (= 0.6 g/cm3).

Then, the biomass of the fallen deadwood was 
determined using the IPCC [50, 51] density reduc-
tion factors (sound =  1, intermediate =  0.6, and rot-
ten =  0.45). The biomass of standing dead trees was 
measured using the same criteria as live trees, but a 
reduction factor of 0.975 is applied to dead trees that 
have lost leaves and twigs, and 0.8 for dead trees that 
have lost leaves, twigs, and small branches (diameter 
<10 cm) ([51], p 4.105).

To convert biomass to carbon mass for all categories 
(stands, roots, deadwood, understory, and litter), a factor 
of 0.45 was applied.

Soil organic carbon (SOC) was calculated using Eq. (6) 
[50, 51]:

where SOC =  Soil organic carbon, Dep =  depth of soil 
layer (m), BD =  bulk density (g/cm3), Csample =  organic 

(4)BA =

∑1
n

[

π × (DBHi/200)
2
]

Splot
× 10, 000

(5)B = π × r2 × L× δ

(6)SOC = Dep× BD × Csample × 100
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carbon content of soil sample (%), and 100 is the default 
unit conversion factor.

Statistical analysis
One-way ANOVA tests were applied to compare stand 
densities, DBH, height classes, basal areas, and six cate-
gories of carbon stocks of the five Melaleuca forest types. 
LSD post hoc tests were also used for all pairwise com-
parisons between group means. Statistical analysis was 
undertaken using Microsoft Excel 2010 and the R Statis-
tic Program.
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