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Farming in Changing Production Conditions:  

Agricultural Technology, Climate Change and Adaptation in Vietnam 

Abstract 

In an era when enormous challenges to food security are imposed on humanity through 

phenomena such as global climate change, it is important to understand how farming households 

adapt and respond to a changing production environment. This is particularly relevant for 

developing countries that are heavily dependent on agriculture, like Vietnam. The primary 

research objective of this study is to determine how smallholder rice farmers in Vietnam respond 

to changes in the production environment driven by climate change over time, and the main 

driving forces behind farmers’ responses. To explore different aspects of rice farmers’ responses 

to changing production conditions, this thesis consists of three empirical studies at the 

intersection of development and environmental economics, with a special focus on rural farming 

households in Vietnam.  

Technological change and its diffusion have become major factors contributing to the 

development of Vietnam’s agricultural sector over many years as farmers have constantly 

adopted various agricultural practices to increase crop productivity and improve their standards 

of living. The first study of this thesis investigates the pattern and determinants of the use of 

four agricultural practices – new rice seed varieties, chemical fertilisers, pesticides and 

mechanisation – in small-scale rice farming across different agro-ecological regions of Vietnam. 

Probabilistic record linkage methods were used to find the best-matched observations from the 

two nationally representative surveys in Vietnam (VARH and VLSS) in order to create a 20-

year panel dataset. Using a long panel dataset, the study applied a two-stage estimation strategy 

to determine how and to what extent the changes in agricultural technology have been affected 

by various factors, allowing for potential correlations among different practices used by rice 

farmers. There have been significant changes in the pattern and determinants of agricultural 
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practices applied by farmers in different regions of Vietnam. Prices of hired agricultural labour 

and rice, as well as macro-level socio-economic conditions such as the growing urban 

population and increasing agricultural wages, are the main factors driving the decision to use 

these practices and the intensity of their use. Since findings also confirm a simultaneous 

relationship among the use of agricultural practices, follow-up policy interventions need to 

account for those cross-correlations within a farmer’s joint decisions to apply agricultural 

advances.  

The second study examines the changes in climatological variables of temperature and 

precipitation since 1975 using a comprehensive dataset for a relatively long time period (1975 

to 2014) and a high density of climatic records obtained from 112 meteorological stations across 

Vietnam. It first combines statistical methods with geostatistical techniques to graphically 

represent the distribution of climate patterns, identifying variations and trends over time and 

testing the statistical significance of those changes. Then, the evidence-based information is 

linked to rice production throughout the country to identify likely impacts of climate change on 

rice production. The findings show remarkable changes in the spatio-temporal distribution 

patterns of rainfall and temperature and confirm the statistically significant long-term trends of 

those changes in many areas, including areas with a very high proportion of agricultural land, 

particularly land used for rice production in the Red River and Mekong River deltas. The 

pronounced evidence of climate change at different scales across agricultural regions throughout 

Vietnam is likely to be especially challenging for agriculture, particularly for the key 

agricultural activity of rice growing given its direct exposure to variations in many climatic 

factors. The findings from this study provide a better understanding of underlying climate 

processes and impacts across regions of Vietnam and also provide a basis to develop effective 

climate-related policies for agricultural production, especially rice production, in response to 

changing climatic conditions.  

The third study investigates whether or not farmers have altered their farming strategies 

over time in response to pronounced changes in the climate. This study uses a 20-year panel 
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from nationally representative households in Vietnam, and thereby overcomes a major 

drawback in the previous published work due to the lack of extended time series cross-section 

data at the household level to investigate factors behind farmers’ dynamic choices to adopt soil 

and water conservation techniques for the purpose of adaptation to climatic change. Since 

farmers’ decisions to use certain farming techniques are inherently dynamic, I estimated a 

dynamic random-effects probit model, controlling for unobserved heterogeneity and state 

dependence. Weather shocks and long-run changes in temperature during the growing season 

are significant determinants of farmers’ choices to apply adaptation practices. In addition, the 

decision to adopt in subsequent periods is strongly influenced by past adoption decisions. 

Results also indicate that farmers’ experience, farm size and access to weather and output price 

information affect the decisions to apply conservation measures. This study provides better 

insights into farmers’ decision-making process and its drivers in the face of changing climatic 

conditions, which is useful for practitioners and policy-makers in order to facilitate climate-

resilient strategies to improve farmers’ adaptive capacity under climatic uncertainty. 

Vietnamese farmers have been operating their farms under a continuously transforming 

policy environment over recent decades, specifically since the Renovation Policy in the mid-

1980s. Such policy transitions have created more favourable conditions for the development of 

the agricultural sector to meet the growing demand for food, both domestically and 

internationally. However, new challenges are emerging, climate change in particular, and their 

impacts on agricultural production have been increasingly pronounced. In an era with new and 

emerging challenges, further policy action is required to help the agricultural sector adapt to the 

ongoing changes in the production environment. The findings and policy implications drawn 

from the three studies will be useful in enhancing farmers’ adaptive capacity to improve their 

overall wellbeing in fast changing production conditions. 
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Chapter 1 

 

Introduction 

  

1.1 Overview 

Agriculture plays a significant role in the development process, particularly in 

developing countries where much of the population depends on agricultural production as the 

main source of income. Agriculture can help developing societies by meeting the growing food 

demand, by increasing exports of agricultural products, by supplying labour to other expanding 

sectors of the economy, and by contributing capital for investments (Johnston and Mellor, 

1961). However, the agricultural sector is highly vulnerable to changing production 

environments. Thus, at a time when global climate change and technology development are 

changing production conditions, it is important to understand how small farming households, 

specifically in developing countries, adapt and respond to those changes. 

This thesis consists of three empirical studies at the intersection of development and 

environmental economics, with a special focus on rural farming households in a changing 

production environment in Vietnam. Development economics aims to understand the 

microeconomic foundations of households’ behaviour (e.g. households’ decision-making 

process) to deepen our understanding for the purpose of improving standards of living, 

especially for rural farming households in developing countries. Environmental economics 

studies, in turn, provide an insight into environment-related problems that could hamper 

development processes, particularly the advancement of vulnerable groups like small-scale 

farmers in the least developed countries. A better understanding of factors driving those 
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development processes, and constraints deterring them, will be useful to improve smallholders’ 

welfare and to enhance their adaptive capacity to changing production conditions. 

Farmers around the world have a long record of constantly seeking to increase 

productivity and improve their wellbeing by finding new and better ways of farming. This 

includes the use of agricultural practices such as new seed varieties, fertilisers and agricultural 

machinery. Technological change and its diffusion have become major factors shaping the 

development process of the agricultural sector in many countries since the Green Revolution 

began in the 1960s (Hayami and Ruttan, 1970; Schultz, 1964; Sunding and Zilberman, 2001; 

Suri, 2011). Consequently, there is an increasing interest in agricultural technology changes, 

especially in less developed countries like Vietnam, because new agricultural technologies 

promise to substantially improve crop yields and income (Besley and Case, 1993; Feder et al., 

1985; Suri, 2011). Also, it is often noticed that changes in agricultural technology at the farm 

level have been driven by various climatic, technological, economic, social and political forces, 

which could affect the agricultural development process. 

Across the globe, climatic change has been manifesting through various channels such 

as increasing temperatures, heavier precipitation or prolonged periods with very little or no 

precipitation, as well as through more frequent and more intense weather-related extreme events 

(Below et al., 2010; Hisali et al., 2011). The Intergovernmental Panel on Climate Change notes 

that globally averaged surface temperature has increased by 0.85 °C between 1880 and 2012 

(Stocker et al., 2014). Changes in average precipitation have not been spatially and temporally 

uniform, with decreases in mid-latitude areas and increases in other latitudes (IPCC, 2007). It is 

also very likely that weather-related extreme events are increasing in frequency and intensity on 

a global and local scale (Caesar et al., 2011; Pingale et al., 2014). In the case of Vietnam, the 

evidence of climatic change has been observed across regions. Observed changes in the climate 
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system are having major effects on natural systems as well as on human activities, including 

agricultural production around the world.   

In the face of climate change, adaptation is one of the options for reducing its adverse 

impacts, particularly in the agricultural sector (Deressa et al., 2009; Mendelsohn and 

Kurukulasuriya 2007). It could be argued that farming is about constantly adapting to external 

conditions through the process of behavioural and technological adjustments of individual farm 

households. This results in a wide range of response strategies for climate change that have been 

identified in many empirical studies (IPCC, 2007). These adaptation strategies can be classified 

in five categories: farm production management, farm financial management, farm 

diversification, external interventions, and management of social networks and governance 

(Below et al., 2010). Among those, practices that preserve land and water resources are 

promising approaches for adaptation of farming systems to various stresses (Kato et al., 2011; 

Sietz and Van Dijk, 2015). 

 

1.2 The context of Vietnam 

Household livelihoods in developing countries, in particular for smallholders in rural 

areas, depend heavily on agriculture as a predominant source of income. Despite Vietnam’s 

rapid economic development, agriculture continues to play a critical role in the economy (GSO, 

2014). Crop production in Vietnam is still dominated by rice as a major cash crop, using 39.8% 

of the total agricultural land (GSO, 2014). Since 1990s, the total output, consumption, export 

and productivity of rice have continuously increased in Vietnam (Figure 1.1). It is also obvious 

that the harvested area of rice has remained relatively stable over years and significant increase 

in productivity has been the main factor leading to increased export.  
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Figure 1.1 Long-term trend in rice production and consumption in Vietnam (1992-2014) 

Source: Food and Agriculture Organization Corporate Statistical Database – FAOSTAT; OECD, 2015 

 

Agricultural technology changes have been the main driver contributing to the 

development of Vietnam’s agricultural sector over time, specifically for rice cultivation. From 

the introduction of the first high-yielding rice variety IR8 in 1966 in Vietnam, the Green 

Revolution has contributed significantly to the rice sector. Since then, the momentum of 

Vietnam’s Green Revolution has continued based on the continuous release of new improved 

seed varieties and the increasing application of other technologies such as chemical fertilisers, 

pesticides and mechanisation (OECD, 2015; Ut and Kajisa, 2006). 

However, significant changes in external conditions including climatic risks and 

technological, economic, social and political forces have posed numerous challenges for the 

farming sector. There is little doubt that Vietnam is being affected by climatic variability and 

change (Thomas et al., 2010). From the 1970s, the recorded average temperature of Vietnam 
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has increased by 0.26±0.10 °C per decade, twice the rate of global average temperature for the 

same period (Nguyen et al., 2013). Also, total annual rainfall has been declining in five out of 

eight climatic zones of Vietnam over the same period (Nguyen et al., 2013). Climatic uncertainty 

has also intensified the incidence and magnitude of extreme events such as floods, droughts and 

typhoons across agro-ecological regions. It has been estimated that climatic change may directly 

affect about 10% to 12% of Vietnam’s population and lead to the loss of approximately 10% of 

Gross Domestic Product (Vietnam Government Portal, 2011). More importantly, the country’s 

most climate-dependent activity – agricultural production – still dominates Vietnam’s economy, 

accounting for 22% of Gross Domestic Product and 54% of the labour force (GSO, 2014). Thus, 

it is expected that the impacts of climate-related changes will be particularly severe in fast 

changing environmental conditions and those effects could hamper the sustainability of 

Vietnamese farmers.  

In the face of these risks, Vietnamese farmers have been constantly adapting to the 

changing climate by applying a broad range of adaptation practices. The most common 

adaptation practices for climate change include diversification of crops and income sources, 

adjustments of various farm management practices, and adoption of soil and water conservation 

measures. Of these, applying soil and water conservation practices are a key adaptation method 

to maintain soil moisture, alleviate growing water shortages and worsening soil conditions, and 

mitigate the negative impacts of higher temperatures and lower rainfall (Kurukulasuriya and 

Rosenthal, 2003). In Vietnam, farmers have been observed using rock bunds, soil bunds, 

terraces and grass lines as soil and water conservation measures. 
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1.3 Research questions and objectives 

This research was motivated by the ongoing changes that are occurring in the 

agricultural sector in Vietnam. Technological change and its diffusion have become major 

factors contributing to the development of Vietnam’s agricultural sector over many years. Over 

that time, farmers have been observed to be constantly adopting various agricultural 

technologies to increase crop productivity and improve their standards of living. Recently, 

however, there is pronounced evidence of climate anomalies at different scales across 

agricultural regions throughout Vietnam which is likely to be especially challenging for 

agriculture, particularly for the key agricultural activity of rice growing given its direct exposure 

to variations in climatic factors, such as temperature and precipitation. Thus, a primary research 

objective is to determine how smallholder rice farmers in Vietnam are responding to changes in 

the production environment driven by climate change over time, and what are the main driving 

forces behind farmers’ responses. The three empirical studies in this thesis explore different 

aspects of farmers’ responses by asking several research questions. 

The first study, reported in Chapter 2, investigates the pattern and determinants of the 

use of four agricultural practices – new seed varieties, chemical fertilisers, pesticides and 

mechanisation – in small-scale farming during a transition period in Vietnam, specifically since 

the Renovation Policy in the mid-1980s. It addresses two research questions: How has 

agricultural technology changed over the last 20 years in Vietnam? What factors have 

contributed to those technology changes over time? Using a longitudinal panel dataset over 20 

years from nationally representative surveys, the research first explores the pattern of 

agricultural technology changes across the study areas of six provinces across the country. It 

then investigates factors that may drive those changes based on the characteristics of farming 

households, the regional market conditions and macro-level drivers.   
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The second study, reported in Chapter 3, investigates changes in climatological variables 

of temperature and precipitation since 1975 to address two research questions: What is the 

empirical evidence of climate change across regions of Vietnam? What are the potential effects 

of those changes on the agricultural sector, particularly for rice production? The study uses a 

comprehensive dataset for a relatively long time period (1975 to 2014) and a high density of 

climatic records obtained from 112 meteorological stations across the country. The 

comprehensive approach of combining statistical testing with geostatistical techniques enables 

maping of climate patterns at a very fine resolution to identify changes and trends over time and 

statistically confirm their significance. Then, the empirical evidence of the spatio-temporal 

variations of climatic conditions is linked to rice production throughout the country to identify 

any likely impacts. Given the recently observed significant changes in climate conditions, it is 

reasonable to expect more negative climate-related consequences for agriculture due to the 

sector’s direct exposure to the variations of climatic elements. The findings from this study will 

provide a basis for developing effective climate-related policies to respond to ongoing climate 

change and to help mitigate the adverse impacts of climate change on agricultural production in 

rural areas. 

The third study, reported in Chapter 4, investigates whether or not farmers have altered 

their farming strategies over time in response to pronounced changes in the climate. Two 

research questions are addressed: To what extent have farmers used soil and water conserving 

techniques as adaptation practices in response to changing climate conditions? What are the 

main drivers influencing farmers’ decision-making process of applying adaptation practices to 

cope with climate change? Findings drawn from this study can be used to strengthen the adaptive 

capacity of rural households and to inform policymakers in their agricultural policy-making 

activities to cope with future changes in climate. 
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1.4 Mind map 

Figure 1.2 presents the general framework of the thesis showing the relationships 

between the three studies. These empirical studies focus on providing the evidence-base to 

develop policy recommendations to improve agricultural production in a changing production 

environment driven by climate change in Vietnam. Study 1 in Chapter 2 describes the general 

pattern of agricultural technology changes over 20 years in Vietnam. The second study in 

Chapter 3 focuses on climate change – one of the major constraints affecting agriculture. The 

third study in Chapter 4 investigates the strategies that have been applied by smallholder farmers 

to cope and adapt to the ongoing changes in climatic conditions. 

It is important to note that Vietnamese farmers have been operating their farms under a 

continuously transforming production environment over recent decades, including changes in 

agricultural technologies, agriculture-related policies and more recently, climatic conditions. 

This study creates an analytical framework to deepen our understanding of agricultural 

production at the farm level under significant changing production conditions across Vietnam.   
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Figure 1.2 Mind map of the thesis 
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1.5 Contribution to the literature 

Study 1 in chapter 2 extends existing approaches in the literature for investigating 

agricultural technology changes in several ways. It acknowledges that farmers regularly face 

decisions to simultaneously apply several agricultural practices. The approach used takes into 

account the simultaneity of the use of four major agricultural practices – the use of new seed 

varieties, chemical fertilisers, pesticides and machinery – that are applied by rice producers. 

This approach overcomes the limitation of many previous empirical studies that focus on a 

single specific practice. These decisions are modelled simultaneously in a multi-equation 

framework allowing for potential correlation between choices across space and time and, at  the 

same time, controlling for potential endogeneity and unobserved household heterogeneity. The 

study deepens our understanding of the pattern and determinants of agricultural technology 

changes and provides new empirical insights related to possible factors driving, as well as 

constraints deterring, changes in technology by farming households.  

The study employs an extensive cross-sectional time series dataset from nationally 

representative households in Vietnam from 1992 to 2012. Probabilistic record linkage methods 

were used to find the best-matched observations from the two original surveys, the Vietnam 

Access to Resources Household Survey (VARH) and the Vietnam Living Standard Survey 

(VLSS), to create a 20-year panel dataset. Such a long panel allows us to capture the dynamic 

patterns of technology changes and their determinants at the farm level. This represents a 

contribution of our study since studies using long time-series-cross-section data to investigate 

the dynamic behaviour are still lacking in the existing literature. This probability linked dataset 

is further explored in the third study on farmers’ coping strategies in the face of a changing 

climate. 
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Study 2 in Chapter 3 improves previous studies by integrating statistical and 

geostatistical techniques to provide new evidence of ongoing climate change in Vietnam, both 

temporally and spatially. The comprehensive approach of combining statistical testing with 

geostatistical techniques enables climate patterns to be mapped at a very fine resolution to 

identify changes and trends over time and statistically confirm their significance. Using records 

of monthly precipitation and temperature for a relatively long time period (1975 to 2014) over 

a high density of 112 meteorological stations across the country provides superior spatio-

temporal coverage and substantially improves data accuracy, particularly for interpolation 

techniques for climatic variables. Comparing evidence-based observed climate change with the 

spatial pattern of agricultural land use across Vietnam will help inform decision-makers and 

communities on the likely effects of the changing climate on agriculture. 

Study 3 (Chapter 4) uses a relatively long panel dataset over 20 years, and thereby 

overcomes a major drawback in the previous published work due to the lack of extended time 

series cross-section data at the household level to investigate the dynamic choices that farmers 

make about adaptation practices to cope with changing climatic conditions. The approach also 

controls for methodological issues associated with dynamic modelling, such as unobserved 

household heterogeneity, initial conditions and state dependence, that could potentially lead to 

biased estimates. This study is among very few empirical studies globally that explain the 

pattern of adopting climate change adaptation practices in agriculture using long panel datasets, 

and is certainly the first such study for Vietnam. Findings from this study are critical for 

practitioners and policy-makers to facilitate climate-resilient strategies to improve small-scale 

farmers’ adaptive capacity to cope with future changes in the climate. 
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1.6 Structure of the thesis 

The thesis consists of three separate studies and is organised in five chapters as follows: 

Chapter 1 provides an introduction overviewing the motivation, research questions, research 

objectives, and approaches and methods applied for analysis. Chapter 2 presents the first study 

investigating the pattern of agricultural technology changes in rice-cultivating households in 

Vietnam. Chapter 3 presents the second study, which focuses on identifying empirical evidence 

of climate change in Vietnam and its implications for the farming in a changing production 

condition. Chapter 4 presents the third study on adaptation in farming, with lessons for 

adaptation to climate variability and change across regions of Vietnam. Chapter 5 presents some 

concluding remarks and policy implications, outlines some limitations and provides directions 

for further research.  
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Chapter 2 

 

Pattern and determinants of agricultural technology changes: 

Evidence from rice-cultivating households in Vietnam 

 

Abstract 

Technological change and its diffusion have become major factors shaping the farming sector in many developing 

countries, including Vietnam. This study investigates agricultural technology change and its determinants at the 

farming household level using an extensive 20-year panel dataset of nationally representative surveys in Vietnam. 

The two-stage estimation strategy provides an efficient way to determine how and to what extent changes in 

agricultural technology (i.e. new seed varieties, chemical fertilisers, pesticides and machinery) have been affected 

by various factors, allowing for potential correlations among different technologies used by rice farmers. We find 

that there are significant changes in the pattern and determinants of agricultural technologies applied by farmers in 

different regions of Vietnam, with notable contributions from improved seed varieties and the rapid spread of 

agricultural mechanisation. Also, findings reveal that prices of hired labour and rice, as well as macro-level socio-

economic conditions such as the growing urban population and increasing agricultural wages, are the main factors 

driving both the decision and the intensity of using agricultural innovations in the study areas. Findings also confirm 

correlations among decisions to use agricultural technologies. Follow-up policy interventions such as increasing 

access to credit that aim to facilite agricutltural technology need to account for the interrelationships in an individual 

smallholder’s decision-making process to apply agricultural advances.  

  

Keywords: Agricultural technology, pattern changes, smallholders, panel data, Vietnam 

JEL codes: D13, Q12, Q18 
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2.1 Introduction 

Despite Vietnam’s rapid economic development, agriculture continues to play a critical 

role in the Vietnamese economy, accounting for 22% of Gross Domestic Product and 54% of 

the labour force (GSO, 2014). The Renovation Policy (“Doi Moi”) introduced in 1986 with a 

broad range of policy measures to shift Vietnam from a centrally planned economy to a market-

oriented one by facilitating the private, household economy and agribusiness has generated 

remarkable results in the agricultural sector (Marsh et al., 2006). Total farm output more than 

tripled from 1990 to 2013, lifting rural incomes, reducing poverty and increasing agricultural 

exports (OECD, 2015). Over recent decades, Vietnam’s agricultural sector has also 

outperformed all other countries in Asia (see Appendix 2A for details) (OECD, 2015). The 

Renovation Policy has resulted in substantial changes in land use and land ownership in 

Vietnam. Smallholder farmers have gained more flexibility in managing their plots, including 

applying appropriate agricultural innovations and altering investment levels of input 

technologies such as new seed varieties, chemical fertilisers and crop protection methods (Marsh 

et al., 2006). 

There is an increasing interest in agricultural technology changes, especially in 

developing countries like Vietnam, because these innovations promise to substantially improve 

crop yields and income (Besley and Case, 1993; Feder et al., 1985; Suri, 2011). Technological 

change and its diffusion have become major factors shaping the farming sector over the last 

several decades (Hayami and Ruttan, 1970; Schultz, 1964; Sunding and Zilberman, 2001). As 

a result, there is a vast literature on agricultural technology changes. Extensive reviews on 

agricultural technology adoption include Feder et al. (1985), Besley and Case (1993), Sunding 

and Zilberman (2001) and Doss (2006).  

Sunding and Zilberman (2001) specify a list of embodied technologies in agricultural 

production such as new seed varieties, fertilisers, pesticides and tractors. Farmers regularly 
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make decisions to apply these technologies simultaneously, or sequentially, or as a portfolio. 

However, empirical studies considering the use of several embodied technologies as interrelated 

choices at a farm level are relatively sparse in the literature (Doss, 2006; Smale et al., 1995).  

Most of the previous research using cross-sectional data on technological changes at the 

farm level takes a snapshot at a given point in time. Consequently, the dynamic nature of that 

process is not taken into account properly. Due to the lack of appropriate data, the number of 

studies on agricultural technology changes using longitudinal data remains limited, and the 

timescale of the technology applied is relatively short. Furthermore, Doss (2006) points out that 

econometric techniques dealing with endogeneity and simultaneity in applying new 

technologies have become increasingly sophisticated. Researchers are not only concerned with 

the decision to apply a technology but also the degree or intensity of use of the technology. 

Multi-equation modelling, which can specify more flexible equations for decision-making 

processes for the farmer’s decision problem and controls for potential interrelationships between 

those decisions, has been widely applied in recent empirical studies on the use of agricultural 

practices. This method of using multi-equation modelling is applied in this research.  

The study aims to address two research questions: How has agricultural technology 

changed in the last 20 years in Vietnam? What factors have contributed to those technology 

changes over time? The pattern of agricultural technology changes is explored across the study 

area. The factors that may drive those changes based on the characteristics of farming 

households, regional market conditions and some macro-level drivers are investigated.  

This study makes several contributions to the existing literature by addressing several 

gaps in the knowledge on technology changes in agricultural production. Firstly, the extensive 

20-year panel data from a nationally representative sample of households of Vietnam allows us 

to take advantage of the longitudinal dataset, and control for potential endogeneity and 

unobserved heterogeneity. Since technology change is a long-term process, the cross-sectional 
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time series data are useful for uncovering the inter-temporal dynamics of agriculture-related 

innovations. Secondly, based on this extensive dataset, we take into account various components 

of agricultural innovations implemented by rice producers such as new seed varieties, chemical 

fertilisers, pesticides and machinery. This approach overcomes the limitation of focusing solely 

on a specific innovation as in other empirical studies. More importantly, since farmers’ use of 

new technologies could be characterised as several interrelated decisions, we model these 

decisions simultaneously in a multi-equation framework and also allow for potential correlation 

across space and time. The study deepens our understanding of agricultural technology applied 

by farmers and provides new empirical insights on possible factors driving agricultural 

technology changes by farming households. 

The remainder of the chapter is structured as follows. Section 2.2 presents the literature 

review, followed by a brief overview of the agricultural sector and agricultural technology 

changes in Vietnam in Section 2.3. Section 2.4 describes the data used in the study. Section 2.5 

describes the empirical model and estimation strategies. Section 2.6 discusses the empirical 

results, followed by the conclusion and policy implications in Section 2.7. 

 

2.2 Literature review  

Farmers around the world have a long record of constantly seeking to increase 

productivity and improve household welfare by applying new agricultural technologies. 

Technological change and its diffusion have become major factors contributing to the 

development of the farming sector over the last few decades (Barham et al., 2004; Hayami and 

Ruttan, 1970; Schultz, 1964; Sunding and Zilberman, 2001; Suri, 2011). Since the literature on 

agricultural technology changes has been extensively documented, this study focused on 

selected studies that highlight gaps in our knowledge that the present study is aiming to address. 
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Three aspects were considered: classification of agricultural technologies, empirical 

approaches, and advances in research methods dealing with technology changes. 

Sunding and Zilberman (2001) distinguish between agriculture-related innovations that 

are embodied or disembodied in capital goods or products. Embodied technologies include 

biological innovations (such as new seed varieties), chemical innovations (such as fertilisers and 

pesticides) and mechanical innovations (such as tractors). On the other hand, disembodied 

technologies such as agronomic innovations are usually applied in packages such as integrated 

pest management, and soil and water management practices. Farmers, as producers, may decide 

to implement technologies simultaneously, or sequentially, or as a portfolio. As a result, 

researchers studying changes in agricultural technology must carefully consider the nature of 

the data, empirical approaches, and modelling methodologies such as using dichotomous or 

continuous variables, and modelling simultaneously or sequentially. Although implementation 

of embodied technologies such as seeds, pesticides and fertilisers can be characterised as several 

interrelated decisions, little of the recent literature focuses on the issues of endogeneity and 

simultaneity of these decisions of an individual farm (Doss, 2006; Feder et al., 1985; Smale et 

al., 1995).  

Besley and Case (1993) point out three different approaches for studying on technology 

changes in agriculture across space and time based on the type of data available: cross-sectional, 

time series and panel data analysis. Most previous studies were based on cross-sectional datasets 

(D’Souza et al., 1993; Diagne and Demont, 2007; Manda et al., 2016; Rahm and Huffman, 1984; 

Ransom et al., 2003; Shiferaw et al., 2013). These studies take a snapshot at a given point in 

time and therefore ignore some dynamic characteristics of the decision-making process. Time 

series studies can show the dynamics of changes in using various technologies by explaining 

how the rate of technology applied varies with time. However, these studies only use an 

aggregate measure of technology use, such as percentage of new technology adopted, and are 
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unable to give insights into what might drive the dynamic process of applying new technology 

(Besley and Case, 1993).  

Longitudinal analyses take advantage of both cross-sectional and time series data to 

investigate technology change and the drivers associated with that process across space and 

time. For instance, Barham et al. (2004) exploit the 1994-2001 panel dataset from the Wisconsin 

dairy sector to examine the dynamics of somatotropin rBST used by farmers and point out 

differences among non-adopters, dis-adopters, and early and late adopters.1 Also, Moser and 

Barrett (2006) consider the dynamics of smallholders’ use of high-yielding rice from 1993 to 

1999 in Madagascar and find that seasonal liquidity constraints discourage application and 

learning effects exert significant influence over adoption decisions. A recent study by Suri 

(2011) uses 1997-2004 panel data for over 1,200 Kenyan households. The study takes advantage 

of the longitudinal dataset to examine how farmers’ decision to implement improved 

agricultural technology is affected by the heterogeneity in net returns of the technology adopted. 

Unfortunately, the fundamental limitation of using panel data for studies on agricultural 

technology changes is the lack of appropriate datasets, especially in developing countries like 

Vietnam. Thus, the number of studies using longitudinal data is sparse in the literature, and also 

the timescale of the technology applied is relatively short. 

In terms of methodological advances, Doss (2006) indicates that recent studies on 

agricultural technology focus on developments in modelling methodologies to further 

understand the implementation decision-making process. Feder et al. (1985) indicate that many 

of the previous empirical studies on technology changes have relied on probability models 

(probit or logit) to analyse the effects of independent variables on dichotomous choices. 

However, researchers are not only interested in the decision to adopt technology but also the 

                                                                 
1 rBST, a genetically engineered, productivity-enhancing hormone that is injected in cows. 
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degree or intensity of application. Thus, Tobit estimation, originally developed by Tobin (1958), 

has been widely applied in many empirical studies using continuous but limited (or censored) 

variables to quantify the degree of technology applied. There is increasing interest in new 

modelling approaches to address issues of endogeneity and simultaneity in the decisions to use 

new technologies (Doss, 2006). For example, Smale et al. (1995) simultaneously model the 

choice of whether or not to adopt and the decision of how much input to use. Josephson et al. 

(2014) apply Seemingly Unrelated Regression (SUR) using an Ethiopian household panel 

dataset to identify the effects of rural population density on input demand and households’ 

welfare. Another recent promising approach focuses on multi-equation modelling, which is able 

to specify more flexible equations for multiple decision-making related to  farmer’s decision 

problems and controls for potential interrelationships between those decisions. However, the 

number of empirical studies applying this approach in the literature on investigating changes in 

agricultural innovations is still relatively limited (Doss, 2006; Josephson et al., 2014).  

Drawing from the literature on agricultural technology changes, some gaps were 

identified and further explored in our study to deepen our understanding of technology use at 

the farm level. Our 20-year panel dataset provides a means to examine farmers’ changes in using 

agricultural practices such as new seed varieties, fertilisers and mechanisation, and control for 

potential endogeneity and unobserved heterogeneity. It is also possible to consider various 

components of agricultural practices such as new seed varieties, chemical fertilisers, pesticides 

and machinery applied by producers simultaneously, which allows for modelling the correlation 

between choices across space and time.  
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2.3 Background: Agricultural sector and technology change in Vietnam 

2.3.1 Agricultural production 

The Vietnamese economy is dominated by agricultural production (GSO, 2014). Since 

1986, following the Renovation Policy, Vietnam has shifted from a centrally planned economy 

— where the State took control of agricultural production — to a socialist-orientated market 

economy where individual farms have more flexibility over their production activities (Marsh 

et al., 2006). The structural transition has allowed farmers flexibility to alter their production 

systems in response to technological changes and market signals, and cope with risks associated 

with variations in the production environment. As a result, total agricultural output more than 

tripled in volume between 1990 and 2013, leading to higher farmers’ incomes and reduction of 

poverty (Figure 2.1). Vietnam has maintained a higher growth rate in agricultural production 

than most countries in the region (see Appendix 2A for details) (OECD, 2015).  

 

Note: Gross Agricultural Output (GAO); Taking indices for 1990 as 100. 

Figure 2.1 Growth in the volume of agricultural output in Vietnam (1990-2013) 
Source:  Food and Agriculture Organization Corporate Statistical Database – FAOSTAT; OECD, 2015 
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Crop production in Vietnam is still dominated by rice as a major cash crop, using 39.8% 

of the total agricultural land (GSO, 2014). Rice farmers are typically smallholders and their 

livelihoods depend heavily on agriculture as the predominant source of income. Agricultural 

production, particularly rice cultivation, is inherently vulnerable to climate-related risks due to 

the large cultivated areas and the direct exposure to climatic conditions. Rice production in 

Vietnam combines areas with irrigation and rain-fed spreading across several agro-ecological 

regions. Large cultivated areas in the deltas are mainly irrigated, however the irrigation systems 

are not well-constructed. Hence, rice production is still sensitive to climate exposure. 

2.3.2 Agricultural technology changes 

From the introduction of the first high-yielding rice variety IR8 in 1966 in Vietnam, the 

Green Revolution has contributed significantly to rice production. High yielding rice varieties 

allow farmers to grow not only one crop per year like before, but multiple crops with high 

productivity (Soong, J., 2006). In order to maintain soil fertility in that intensive rice production 

system, fertilizers have been widely used to supply additional nutrient needs for warranting high 

crop yield. Also, the momentum of Vietnam’s Green Revolution has continued based on the 

continuous release of new improved varieties and the increasing application of other 

technologies such as chemical fertilisers and pesticides (OECD, 2015; Ut and Kajisa, 2006). 

However, in recent years, a decline in demand for some input technologies in agricultural 

production, especially chemical-related inputs like chemical fertilisers and pesticides, has been 

observed in Vietnam (see Figures 2.2 and 2.3 for details).   

2.4 Data and descriptive analysis 

2.4.1 Household data 

The study exploits a rich longitudinal dataset from a nationally representative sample of 

households from six provinces (Ha Tay, Lao Cai, Phu Tho, Nghe An, Khanh Hoa and Long An) 
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across various agro-ecological regions of Vietnam.2 A panel dataset was created by combining 

data from two separate national representative surveys: the Vietnam Living Standard Survey 

(VLSS 1992-1993, 1997-1998) and the Vietnam Access to Resources Household Survey 

(VARHS 2006, 2008, 2010, 2012). The VLSS was first carried out in 1992-1993 by the State 

Planning Committee (SPC) and the General Statistics Office (GSO), with technical support from 

the World Bank. The sample was selected based on a three-stage sampling strategy to represent 

various geographic regions of Vietnam. The second VLSS was implemented in 1997-1998 with 

the sample including most of the households surveyed in the VLSS 1992-1993. Further, the 

VARHS surveys were designed to be complementary to the VLSS and were conducted by the 

Vietnam Institute for Economic Management (CIEM) and the University of Copenhagen. The 

VARHS was implemented in 12 provinces across all regions of Vietnam. All surveys collected 

information about household and farm-level characteristics, agricultural production, non-farm 

employment, expenditure, assets, and savings and credit. Commune-level data on regional input 

and output prices have also been collected in parallel with household surveys and were deflated 

using the consumer price index published by Vietnam General Statistics Office.  

It is often argued that farmers who perceive changes in production conditions tend to 

look for ways to respond to the changes by applying various practices (Maddison, 2007; 

Megersa et al., 2014). Because adapting to changing production environments is an ongoing 

process over a long period of time, data with a relatively long time frame are needed for studies 

on changes in agricultural practices applied by farmers. However, since the VARHS only 

provides short panel data for relatively recent years, it is necessary for the current temporal study 

to find and match these data with observations from the earlier VLSS to create a long panel 

dataset over 20 years. A combined panel dataset with a length of 20 years based on the two sets 

                                                                 
2 The original household dataset includes 12 provinces across Vietnam. However, after matching the records over 

time as discussed in detail further below, we retain data from six of these provinces for further analysis.  
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of surveys allows us to take advantage of the longitudinal dataset to investigate changes in 

agricultural practices at the farm level over a relatively long time period.  

However, the absence of unique and identical identifiers between the datasets of the two 

separate surveys makes the simple merging of the data from the two sources impossible. The 

key obstacle was that these surveys may not have interviewed the same households in various 

years due to the differences in the sample, although they used an identical three-stage sampling 

strategy. The root of the problem is that, in Vietnam, all national representative surveys, such 

as the two household surveys VARHS and VLSS, rely on a core sample, which is drawn from 

the Population Census. However, the sample of that census is altered every ten years. 

Consequently, the core sample that can be used to select interviewees for any national 

representative survey like VARHS and VLSS has to be changed accordingly. Therefore, 

constructing a long panel using the same set of households surveyed consecutively over many 

years is not possible in our case.  

To address this problem, a probabilistic record linkage method has been used in the 

literature to identify and link observations from independent sources with no unique identifiers 

(Blasnik, 2010; Gomatam et al., 2002; Gu et al., 2003; Ong et al., 2014; Wasi and Flaaen, 2015; 

Winkler, 2006). This record linkage method was applied to construct a linked panel dataset 

containing observations from the two sets of surveys by way of finding the best-matched 

observations from the two original surveys. The theory behind probabilistic record linkage 

methods is based on ‘employing a combination of approximate string comparators and 

probabilistic matching algorithms to identify the best matches and assess their reliability’ 

(Blasnik, 2010). While the statistical foundations of this matching method were suggested by 

Newcombe (1959), the formal mathematical concept was developed and further applied in 

various fields (Fellegi and Sunter, 1969; Grundy and Jitlal, 2007; Jenkins et al., 2008).  
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Following Blasnik (2010), suppose that a ‘master’ dataset (in our case data collected by 

VARHS) has na records, and a ‘using’ dataset (data collected by VLSS) has nb records. Each of 

the nb records in VLSS is a potential match for each of the na records in VARHS. The 

match/non-match status of na × nb record pairs needs to be evaluated (Gomatam et al., 2002). 

Fellegi and Sunter (1969) use the ratio of probability for each pair as a matching score. The 

matching scores were calculated as the likelihood that observations from the two original 

surveys refer to the same household, based on a specified list of matching variables. Depending 

on how well each variable matches for each pair of observations, it is assigned a score 

(Dusetzina et al., 2014). Then, for each pair, the matching score is calculated as the sum of the 

scores generated from matching individual variables in the specified list. That matching score 

is then used to define whether two records are matched or linked by comparing it to a specified 

threshold (Baldwin et al., 2015). Winkler (1999) suggests that even after matching, it is 

important to manually review each matched pair, especially for observations with lower 

matching scores.  

In this study, the record linkage technique was used to construct a longitudinal dataset 

using the following procedure:  

(1) Identify those households that were surveyed in the VLSS 1992-1993 (N=3824) and 

then re-surveyed in VLSS 1997-1998 (N=4305) using a common identifier – Household 

identifier number (HID). The resulting panel dataset, which is called a ‘using’ dataset, consists 

of records on 3480 households.  

(2) Identify households that were surveyed in VARHS 2006 (N=2324), and re-surveyed 

in any of the VARHS 2008 (N=3269), VARHS 2010 (N=3203), and VARHS 2012 (N=3247) 

using the common identifier – HID. The resulting panel dataset, called a ‘master’ dataset, 

consists of records on 2024 households. 
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(3) Perform probabilistic record linkage of households that are present in the ‘using’ 

dataset with those that are present in the ‘master’ dataset.3 The matching was performed based 

on a specified list of comparison variables such as location (e.g. village), same primary sampling 

unit (e.g. commune), having rice production activity, characteristics of the household head (e.g. 

age, gender, experience) and of the farm (household size, farm size). All possible pairs of 

observations (a household from the ‘using’ and a household from the ‘master’ dataset) were 

evaluated, and a matching score computed for each pair. Then, each pair was assigned to one of 

four classes: true positives (the pairs refer to the same households and are classified as matches), 

false positives (the pairs are classified as matches even though they belong to different 

households), true negatives (the pairs, from different households, are classified as non-matches), 

and false negatives (the pairs are classified as non-matches even though they actually belong to 

the same households). The pairs were then sorted by the matching score and a cut-off threshold 

value for the score of 0.8 was applied. Selecting the cut-off threshold value was based on a 

method commonly applied in the literature through the process of manually adjusting that 

threshold in such a way that a minimum number of both false positives and false negatives was 

obtained (Christen, 2012; Gill, 2001; Guiver, 2011). The matched pairs that had a matching 

score of 0.8 or above were then put in a ‘linked’ dataset. This dataset consisted of observations 

on 661 households from six provinces (Ha Tay, Lao Cai, Phu Tho, Nghe An, Khanh Hoa and 

Long An).  

(4) Review the records for each of the 661 households in the ‘linked’ dataset, with 

special attention to households with lower matching scores (scores closer to 0.8). Each pair of 

records in the ‘linked’ dataset were carefully checked and found errors and missing data in 

                                                                 
3 The user-written program RECLINK in STATA by Blasnik (2010) was used to perform the probabilistic record 

linkage. 
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variables of interest that led to inaccurate matching. As a result, a sample of 424 matching 

households was identified.  

(5) Merge the household-level dataset with commune-level information. The 

information of each household is contained in the ‘linked’ dataset, while regional information 

such as average input and output prices was collected at the commune level. Hence, it is 

necessary to merge these data sources to obtain a dataset including all variables of interest. Due 

to missing data at some communes, the final longitudinal dataset with 316 matched households 

including all variables of interest is used for further analysis. 

To control for factors influencing the decision-making process of individual farmers, 

several covariates measuring farm and household characteristics (H), information and market 

characteristics such as prices and access to extension services (M), and regional and macro-level 

socio-economic conditions (C) were included. The selection is based on reviewing previous 

studies on technology changes in agriculture using micro-studies (Chavas, 2001; Cragg, 1971; 

Doss, 2006; Lee, 2005; Mason and Smale, 2013; Moser and Barrett, 2006; Place and Dewees, 

1999; Sietz and Van Dijk, 2015; Sunding and Zilberman, 2001; Xu et al., 2009). 

Household and farm characteristics were first controlled for by using variables that best 

describe the features of the farms. Labour availability, represented by household size, could be 

a variable of interest in agricultural technology studies. Doss (2006) points out that where the 

labour market does not function effectively, particularly in developing countries, households 

must rely on their own labour for agricultural activities. In addition to household characteristics, 

some previous studies on technology use also consider the biophysical features of the farm. In 

general, the overall impact of landholding or farm size on technology changes is inconclusive 

(Maddison, 2007; Piya et al., 2013). In addition, land ownership or tenure has been considered 
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in a number of empirical studies. However, Feder et al. (1985) confirm that there are conflicting 

empirical results on the relationship of tenure and decisions to apply improved agricultural 

technologies.    

Furthermore, market characteristics such as prices and market access may influence 

agricultural technology changes. Commune-level input and output price information were 

controlled through labour and farm-gate average price variables. Furthermore, it is regularly 

hypothesised that access to credit eases the cash constraints of smallholders and allows them to 

invest more in farm production and management. Lack of access to credit may prevent farmers 

from applying innovations, in particular for practices that require high initial investment. 

Previous meta-analysis on changes in agricultural technologies applied by farmers around the 

world reveals that there is a positive relationship between technology use and credit availability 

(Knowler and Bradshaw, 2007). 

2.4.2 Macro-level variables 

Macro-level socio-economic trends may affect producers’ decisions to apply a more 

advanced technology. The evolving labour market through the process of rural labour migrating 

to urban areas is a necessary condition fostering the use of agricultural technologies by farming 

households (Chavas, 2001). By constructing an integrated model of technological change and 

population density, Kremer (1993) indicates that high urban population spurs advanced 

technology in agriculture. Chavas (2001) also points out that meeting the growing food demand 

of the urban population could only be done by applying technological change in agriculture, 

which could lead to substantial increases in productivity. More labour-saving technologies such 

as mechanisation and yield-improving technologies such as chemical fertilisers and high-

yielding varieties have been widely applied in agriculture across the world, particularly by Asian 

farmers since the Green Revolution (Hayami and Ruttan, 1970). The profound labour shifts 
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from agriculture to other sectors pose significant stresses on the farm labour market, and thus 

affect the decision to apply more agricultural technologies (Chavas, 2001). In the study, the 

effect of macro-level factors such as agricultural wage and percentage of urban population on 

changes in agricultural technologies at the farm level was considered. Information on the real 

agricultural wage and percentage of urban population over the study period were collected from 

the Vietnam Statistical Yearbook published by the General Statistics Office (GSO). The real 

agricultural wage is calculated with a base year of 2010.  

In addition, outcome variables representing agricultural technology changes, such as the 

decision to apply agricultural technologies and the intensity of use, at the household level were 

selected. A farmer’s response on whether or not they use a particular agricultural practice is 

modelled as a binary variable. Following Feder et al. (1985), the intensity of technology use was 

defined as the total cost per hectare of a given technology used by farmers. The cost of 

technologies has been deflated using the Consumer Price Index (CPI) with the base year of 

2010. 

2.4.3 Descriptive analysis 

Table 2.1 reports the descriptive statistics for the variables used in the study. The survey 

dataset covers a broad range of variables that may affect agricultural technology changes. The 

descriptive analysis shows relatively high rates of technology use reported by farmers in the 

study area over 1992 to 2012 period: 73% of total households under study use improved seed 

varieties, 86% use fertilisers, 79% use pesticides and 81% use machinery. Use of fertilisers and 

machinery is relatively higher than other practices. The dynamic patterns of agricultural 

technology changes from 1992 to 2012 are presented in Figures 2.2 and 2.3. There is a clear 

general increase in the percentage of households reporting use of improved seeds and machinery 

while use of pesticides and chemical fertilisers shows a slight decline in recent years (Figure 

2.2).  
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Table 2.1 Full sample descriptive analysis 

Variable Description 
Type of 

variable 
Mean SD 

Outcome variables 

Adoption decisions 

Adopted improved seed 

Adopted chemical fertilisers 

Adopted pesticides 

Adopted machinery 

Intensity of adoption 

Improved seed used 

Chemical fertilisers used 

Pesticides used 

Machinery used 

 

Household adopted improved seed (1/0) 

Household adopted fertilisers (1/0) 

Household adopted pesticides (1/0) 

Household adopted machinery (1/0) 

 

Cost of improved seed (Mill.VND/ha) 

Cost of chemical fertilisers (Mill.VND/ha) 

Cost of pesticides (Mill.VND/ha) 

Cost of machinery (Mill.VND/ha) 

 

Binary 

Binary 

Binary 

Binary 

 

Continuous 

Continuous 

Continuous 

Continuous 

 

0.73 

0.86 

0.79 

0.81 

 

1.16 

3.12 

0.75 

1.95 

 

0.19 

0.11 

0.16 

0.15 

 

0.28 

0.83 

0.02 

0.76 

Household and farm characteristics 

Household size Number of family members Continuous 4.6 0.49 

Farm size Farmland operated by household (ha) Continuous 0.405 0.84 

Tenure Farmland ownership (1/0)  Binary 0.87 0.11 

Input and output market access 

Credit Access to credit (1/0) Binary 0.59 0.49 

Labour wages(t - 1) Average regional labour wages in 

previous season (1000VND/day) 
Continuous 62.9 49.7 

Farm-gate price(t - 1) Average regional retail price of rice in 

previous season (1000VND/kg) 
Continuous 3.29 3.52 

Extension Access to extension information (1/0) Binary 0.44 0.50 

Macro-level environment 

Real agricultural wage Real wage in agriculture 

(Mill.VND/month) 

Continuous 3.40 1.45 

Urban population % of urban population (%) Continuous 26.42 4.22 

Note: *VND, Vietnamese Dong (approximately 16.015 VND/$U.S. averaged over 1992 to 2012) 

Figure 2.2 shows a constant increase in the use of agricultural machinery by rice 

producers in the study areas over the 20 years from 1992 to 2012. The percentage of farming 
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households using tractors in their agricultural production has increased significantly from 42.3% 

in 1992 to 65.9% in 2006, 89.3% in 2008, 92.3% in 2010 and 97.9% in 2012. The rapid spread 

of farm mechanisation is associated with a sharp increase in land and labour productivity, and 

thus mitigates the adverse effects of rural labour migration to urban areas or to other sectors. 

For example, Ut and Kajisa (2006) notice a significant increase in productivity of rice from 2.5 

tonnes per hectare in 1980 to 5.5 tonnes per hectare in 2002 across rice production regions of 

Vietnam. Also, in our dataset a positive shift in rice productivity with respect to mechanisation 

applied by farming households was found during the period of 1992 - 2012 (Appendix 2D). 

 

 

 

 

In contrast, a slowdown in the percentage of farmers using chemical fertilisers is 

observed from 1992 to 2012. Starting from a relatively high rate of about 91.3% in 1992, the 

proportion of farmers using fertilisers decreases gradually to 81% in 2012 (Figure 2.2). A similar 

Figure 2.2 Long-term trend in the percentage of households reporting use of agricultural 

technologies (1992-2012) 
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decrease is also observed in pesticide use in recent years, particularly from 2008 to 2012. The 

Vietnamese government has disseminated various environmentally friendly agricultural 

practices recently due to growing concerns about the negative impact of chemical fertilisers and 

pesticides on health and the environment. This has also led to a gradual decrease in chemical 

fertilisers and pesticides applied by many farming households.  

The use of new seed varieties has increased remarkably in recent years, especially from 

2006. The use of improved rice seeds has more than doubled from around 40% in 2006 to 87.3% 

in 2012. The continuous release of modern varieties of rice has been a critical factor maintaining 

the momentum of agricultural growth in Vietnam, even after the Green Revolution (Ut and 

Kajisa, 2006). Thus, agricultural technology changes across the study areas in Vietnam are due 

mainly to better genetics from plant breeding and the rapid spread of agricultural mechanisation.  

 

 

Figure 2.3 shows that the cost of the four practices has increased over time, but at 

different rates. Chemical fertiliser is the most costly, at approximately 8 million VND per 

hectare in 2012. That significant cost is likely one of the factors that can explain the slowdown 

Figure 2.3 Long-term trend in the cost of agricultural technologies  

in the study areas (1992-2012) 
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in the growth rate of fertiliser use in recent years (Figures 2.3 and 2.4). For other practices, 

increases in the cost of improved seeds, pesticides and machinery are also notable over 1992 to 

2012 (Figure 2.3). Especifically, mechanisation has maintained increasing trends in both 

average cost per hectare and the annual growth rate of that cost in recent years (Figures 2.3 and 

2.4). Labour mobility from rural to urban areas over time is likely the main driver behind 

farmers’ shift to labour-saving technology like mechanisation with a constant increase in its 

growth rate from 1992 to 2012 (Figure 2.4).  

 

 

 

2.5  Empirical model and estimation strategies 

To identify possible factors associated with agricultural technology changes in the study 

areas, a two-stage empirical model considering both the decisions to apply agricultural practices 

and the intensity of their use was applied. Using the approach of Cragg (1971), Byrne et al. 

(1996), Alene et al. (2008) and Mason and Smale (2013) of an input consumption framework, 

Figure 2.4 Long-term growth rate in the cost of agricultural technologies  

in the study areas (1992-2012) 

 

0

20

40

60

80

1998 2006 2008 2010 2012

Annual growth rate 

(%)

Growth rate of seed cost (%) Growth rate of fertilisers cost (%)

Growth rate of pesticides cost (%) Growth rate of machinery cost (%)



33 

 

the household’s decision to apply agricultural practices (T) can be specified in the two following 

steps: (1) farmer’s decision is made on whether or not to use a new practice, known as the 

participation decision; and (2) farmer decides the extent of using that practice, known as the 

expenditure-level decision. In the literature, three main groups of factors have been identified 

in studies on agricultural technology changes in developing countries: farm and household 

characteristics (H), information and market characteristics such as prices and access to extension 

services (M), and regional and macro-level socio-economic conditions (C) (Chavas, 2001; Doss, 

2006; Mason and Smale, 2013; Moser and Barrett, 2006; Sunding and Zilberman, 2001; Xu et 

al., 2009).  

It can be observed from the data that many of the surveyed households have not made 

any input purchases: 14.4% of the total sample have not used fertiliser, 14.6% have not used 

pesticides, 20.5% have not used improved seeds and 7.1% have not used machinery; in other 

words, the data is left-censored (Bellemare and Barrett, 2006; Burke et al., 2015; Tobin, 1958). 

Left-censored data may be associated with the issue of sample selection, which potentially leads 

to biased parameter estimates (Heckman, 1977). The issue exists because the sample is non-

random when it only observes the input purchases from farmers who reported use of a particular 

technology. So, while considering the subsample of only technology users, it is very likely that 

some unobservable factors such as farmer’s management ability would influence both their 

participation decision and their expenditure-level decision. Thus, there may be some correlation 

between the residuals of the two stages that can lead to sample selection bias. A popular 

approach for addressing selection bias is to follow a two-step procedure, with the first step 

identifying determinants behind the decision to apply the technology and the second analysing 

factors associated with input technology use given the decision to apply the technology, which 

is referred to as conditional probability (Cragg, 1971; Heckman, 1977; McIntosh et al., 2013). 

Applying this approach, the first step in the participation decision is linked to the second step of 
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the expenditure-level decision by using the inverse Mills’ ratio (IMR), which is able to account 

for any correlations between residuals of the two stages and thus, avoids biased estimation 

(Beltran et al., 2013; Byrne et al., 1996). If the estimated parameter of the inverse Mills’ ratio 

is found to be statistically significant, it can be concluded that sample selection bias is present 

in the sample. Consequently, including that ratio in the estimation model corrects selection bias 

(Byrne et al., 1996). In this study, that strategy to analyse decision-making to use agricultural 

practices in connection with the degree of applying those practices was applied. 

(1) Step 1:  Factors associated with the decision to apply new technology 

A pooled cross-section probit model of the decision to use a given agricultural practice 

was first estimated. The inverse Mills’ ratio (IMR) is then generated and used in a second-stage 

regression to explain the level of input used by producers. The inverse Mills’ ratio for each 

technology equation is calculated as ( ( ' )) / ( ( ' ))IMR F X F X    to account for sample 

selection, where ϕ is the probability density function, and Φ is the cumulative distribution 

function. 

, ,
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     
   (2.1)  

i = 1,2,...N; t = 1,2,...6, 

where Tadopt takes the value of one if the farming household purchased an input technology and 

is zero otherwise; an unknown vector of parameters α to be estimated; s is the type of input 

technology (improved seed, chemical fertilisers, pesticides, machinery); Pr(Tadopt) is the 

probability of input technology s; vectors of explanatory variables X include H, M and C; µs,i is 

an unobserved individual-specific effect, which captures the unobserved heterogeneity, such as 

farmers’ management ability and farmers’ attitude towards new agricultural practices. To take 

into account the unobserved effects, the composite error term was decomposed into individual-

specific time-invariant µs,i terms and εs,i ~ i.i.d.(0, σ2). 
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  (2.2) 

where  is a latent response formulation of the observed decision to apply a technology. 

(2) Step 2: Factors associated with the level of agricultural technology used 

Four components of agricultural practices (new seed varieties, chemical fertilisers, 

pesticides and machinery) applied by rice producers were considered. Since farmers’ decision-

making to use new practices could be characterised as several interrelated decisions, a farmer’s 

joint decision was modelled simultaneously and also allowed for potential correlation between 

them across space and time. In doing so, the level of use of the four agricultural practices was 

estimated using the Seemingly Unrelated Regression (SUR) approach. These models include 

the relevant inverse Mills’ ratios from Step 1 to correct for sample selection bias (Bellemare and 

Barrett, 2006; Burke et al., 2015; Wooldridge, 2010). The regression models can be specified 

as:  

, , 0, , 1 , , 2 , , 3 , , , , , s i tused s s i s i t s i t s i t s i s i tT IMR H M C              (2.3) 

where s is the type of input technology (improved seed, chemical fertilisers, pesticides and 

machinery) and their corresponding error terms , ,  and  

are assumed to be i.i.d.(0, σ2); an unknown vector of parameters β to be estimated. In addition, 

ordinary least squares estimation assumes: cov( , , , ) = 

0 for all t. That is, at any time period t, the cross-equation errors are uncorrelated. However, in 

reality, some factors may influence all error terms and are likely to have similar effects in each 

equation. In our study the errors (residuals) from these four models are suspected to be 

correlated because these decisions are made by the same household simultaneously. This 

suggests correlated error terms as cov( , , , ) = σs,i, for all 
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t. In this case, a Seemingly Unrelated Regression system including a set of equations that has 

contemporaneous cross-equation error correlation is preferred. Here, the set of equations seems 

unrelated at first glance, but their error terms are, in fact, correlated between the equations. 

(3)  Controlling for unobserved heterogeneity µi 

It could be assumed that unobserved heterogeneity µi is independent of the explanatory 

variables, but that assumption would be perhaps too strong since some correlations may exist 

between observable and unobservable characteristics within a farming household. Mundlak 

(1978) proposed an approach to relax this assumption by allowing for correlations between 

unobserved heterogeneity (µi) and the vector of explanatory variables across all time periods, 

called Correlated Random Effect (CRE). In practice, the Correlated Random Effect estimation 

procedure is performed by adding an extra set of explanatory variables to the model (Bezu et 

al., 2014; Mundlak, 1978; Pesaran, 2006; Wooldridge, 2010). That set includes the mean of the 

time-varying variables (e.g. iH , iM , iC ). The Correlated Random Effect estimator was applied 

for both Step 1 and Step 2 to properly handle the issue of unobserved heterogeneity. 

 

2.6 Empirical results and discussion 

2.6.1 Estimation results of the two-stage procedure 

This section presents the estimation results for the two-step procedure proposed in the 

previous section. The procedure allows us to determine factors that may be associated with 

agricultural technology changes over time in the study areas. The probability that farmers report 

use of any of the four agricultural practices: new seed varieties, fertilisers, pesticides and 

tractors, was first estimated. Then, the intensity of using those technologies is modelled in a 

multi-equation framework, conditional on the probability of a farmer reporting use of the 

practices in the first step.  
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(1) Factors associated with the decision to apply new technology 

The probability of a farmer’s use of a particular technology is estimated using a probit 

model, using various covariates such as farm and household characteristics, input and output 

market features, access to extension services and macro-level conditions associated with 

farmers’ decisions. The results are shown in Table 2.2. 

There is statistically significant evidence of the effect of farm and household 

characteristics on agricultural practices used by farmers. Not surprisingly, farmers with more 

farmland and land ownership are generally more likely to apply new practices. It is clear that 

producers who own their land have more incentive to invest in their farms because they can 

benefit from those investments in the future (Beltran et al., 2013). Moreover, households with 

more farmland are also willing to use new practices due to the promise of substantially 

increasing crop yield, particularly for large-scale production (Besley and Case, 1993; Suri, 

2011).  

However, the role of household size on agricultural practices used by farmers is 

insignificant for most of the technologies adopted, except for agricultural machinery. 

Agricultural mechanisation is an interesting technology because our finding indicates that the 

larger size of households is associated with a significantly lower probability of being machinery 

users. Since rural labour migration to urban areas has increased dramatically, the use of 

mechanisation in agricultural production is an important way to overcome the rural labour 

deficiency.  
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Table 2.2 Factors associated with the decision to apply agricultural technologies 

 

Variable 
Improved 

seed 
Fertilisers Pesticides Machinery 

Household size 0.01974 0.03774 0.00384 -0.10068** 

 (0.0390) (0.0690) (0.0395) (0.0504) 

Farm size 0.00003*** 0.00003** -0.00001 0.00003** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Tenure 0.47844** 1.32934*** 0.53476** 0.17180 

 (0.2290) (0.2110) (0.2499) (0.4773) 

Credit 0.11878 0.21936 -0.19861 0.16205*** 

 (0.1008) (0.1225) (0.1001) (0.0289) 

Labour wages(t - 1) 0.00165 0.00038 0.00873*** 0.00940*** 

 (0.0018) (0.0020) (0.0028) (0.0028) 

Farm-gate price(t - 1) 0.03506* 0.05622** 0.03343** 0.00420 

 (0.0179) (0.0230) (0.0151) (0.0170) 

Extension 0.19091* 0.46376*** 0.09641 -0.07836 

 (0.1047) (0.1909) (0.2170) (0.1236) 

Real agricultural wage 1.94952*** 0.30591* 0.11458 0.97172*** 

 (0.1995) (0.1428) (0.2048) (0.2753) 

Urban population 0.51238*** -0.17959 0.15638*** 0.18765** 

 (0.0544) (0.090) (0.0202) (0.0389) 

Constant 14.6284 -17.4936 -7.61281 21.5870* 

 (11.229) (12.256) (11.125) (10.627) 

Year dummy4 Yes Yes Yes Yes 

Within-household means Yes Yes Yes Yes 

N 1376 1525 1375 936 

Pseudo R2 0.2757 0.3394 0.2350 0.2576 

Notes: 1. Standard errors are presented in parentheses  2. *, **, *** significant at 10%, 5%, 1% level  

                                                                 
4 The estimated results of year dummy and within-household means variables are provided in Appendix 2C. 
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Input and output prices are strongly associated with agricultural technology changes. 

Statistically significant evidence of the positive relationship between farm-gate price of rice and 

the decision to apply new seed varieties, chemical fertilisers and pesticides has been found. 

Undoubtedly, increases in output price could encourage farmers’ use of technology since these 

new practices could increase yield (Timmer, 1988; Ut and Kajisa, 2006). Nevertheless, the 

decision to adopt a technology is also affected by input market conditions. More specifically, 

the higher the hired labour wage, the greater the likelihood of using modern agricultural 

practices. 

Increasing demand for food and a favourable macro-level labour market are expected to 

foster agricultural technology (Chavas, 2001; Place and Dewees, 1999). In this study, very 

strong evidence of the effect of macro-level variables such as average agricultural wage and 

urban population on changes in the use of agricultural technologies was found. A higher 

percentage of people living in urban areas is positively and significantly correlated with the 

decision to apply improved agricultural technologies. Vietnam has a rapidly growing urban 

population, and increasing agricultural output through applying new technology is the primary 

way to meet the stronger food demand from urban areas. In addition, the agricultural wage is 

also likely to be a significant factor that affects the decision to apply new technology. 

Statistically significant correlation between real agricultural wage and the probability of farmers 

reporting use of an agricultural technology was found. This may be because the increasing 

average wage in the agricultural sector over time has forced farmers to switch to labour-saving 

technologies. The transition in the labour market has created more incentive to apply new 

technology in agriculture in the study areas in Vietnam. 
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(2) Factors associated with the level of agricultural technology used 

When considering the application of a set of technology components within an 

individual household as interrelated decisions, the Seemingly Unrelated Regression model is a 

preferred approach in the literature because decisions to use those technology components are 

likely to be jointly made by an individual farming household (Smale et al., 1995). In that case, 

the Seemingly Unrelated Regression specification is relevant when it is able to capture the 

potential cross-correlation among different decisions which have been made by producers. Here, 

farmers’ joint decisions were simultaneously modelled and also allowed for potential correlation 

across space and time using a system of equations.  

A farmer’s decision to apply improved technologies in Step 1 and the degree of use in 

Step 2 may occur sequentially or simultaneously in the decision-making process. Following 

Wooldridge (2010), Bellemare and Barrett (2006) and Burke et al. (2015), our approach is 

flexible in allowing separate mechanisms to determine the decision to apply a technology and 

the decision on the extent of application. To begin, the probit models in Step 1 above are 

estimated and obtained the inverse Mills’ ratio of the probability of using a particular 

agricultural practice. Next, the inverse Mills’ ratios are tested whether they are statistically 

significantly different from zero at this stage. If the hypothesis is rejected, the second step  will 

be re-estimated excluding insignificant inverse Mills’ ratios from the models. The final 

estimated results are given in Table 2.3.  

Initially, the coefficient estimates of inverse Mills’ ratios are 0.896 for improved seeds 

(p-value of 0.201), -5.84 for chemical fertilisers (p-value of 0.001), 1.48 for pesticides (p-value 

of 0.000) and 0.530 for machinery (p-value of 0.535). This means that the inverse Mills’ ratio 

coefficients on the use of improved seeds and machinery are not statistically significantly 

different from zero and they are dropped before re-estimation.  
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Table 2.3 Factors associated with the level of agricultural technologies used 

Variable Seed used Fertilisers used Pesticides used 
Machinery 

used 

 - 
-5.84236*** 

(1.0760) 

1.48399** 

(0.4573) 
- 

Household size 0.00499 0.05310 0.06619 0.08052 

 (0.0299) (0.0681) (0.0310) (0.0751) 

Farm size -0.00002*** -0.00008*** -0.00000 -0.00001 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Tenure 0.03490 2.52325* 0.55509 0.67575* 

 (0.3037) (1.1678) (0.3791) (0.3360) 

Credit -0.04507 -0.24663 0.03697 -0.09896 

 (0.0867) (0.2451) (0.0730) (0.2280) 

Labour wages(t - 1) 0.00109 0.00950** 0.00308*** 0.00202*** 

 (0.0015) (0.0038) (0.0010) (0.0004) 

Farm-gate price(t - 1) 0.02059* 0.02052 0.05071** 0.01978** 

 (0.0100) (0.0494) (0.0204) (0.0080) 

Extension -0.03564 -0.28170 0.15934* -0.05287 

 (0.1037) (0.2547) (0.0800) (0.1970) 

Real agricultural wage 0.55351*** 0.83375*** 0.36001** 1.71863*** 

 (0.1531) (0.2730) (0.1388) (0.3173) 

Urban population 0.03180 0.34816*** 0.08426* 0.21565** 

 (0.0380) (0.0843) (0.0440) (0.0900) 

Constant 
21.5522* 

(10.5570) 

30.4962*** 

(11.3655) 

6.79895 

(6.4063) 

-5.26326 

(1.2043) 

Co-variance 

cov(e.y1 X e.y2) 

1.2575** 

(0.4139) 

cov(e.y1 X e.y3) 

0.1658* 

(0.0746) 

cov(e.y1 X e.y4) 

0.0241 

(0.1670) 

cov(e.y3 X e.y4) 

0.5607*** 

(0.1200) 

cov(e.y2 X e.y3) 

1.4084*** 

(0.2628) 

cov(e.y2 X e.y4) 

2.9110 

(1.5889) 

Year dummy:5                                        Yes 

Within-household means:                      Yes 

Notes: 1. Standard errors are presented in parentheses  2. *, **, *** significant at 10%, 5%, 1% level  

                                                                 
5 The estimated results of year dummy and within-household means variables are provided in Appendix 2C. 

ˆIMR
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Considering farm and household characteristics, it has been found that tenure or land 

ownership is still positively contributing to the level of agricultural technologies used by 

producers, with significant effects on machinery and chemical fertilisers. Compared with the 

estimated coefficients of other covariates, the effect of land ownership on technology use is 

relatively high. It is clear that landowners are often willing to invest more in their own 

agricultural land so they can benefit from those investments in the future. In contrast, land 

tenants often lack security of tenure due to short-term rent contracts which clearly affects their 

willingness to take risks with their investments (Banerjee, 2000). In addition, the negative 

coefficients for access to credit are implausible although their effects on the level of technology 

use are not statistically significant. It raises a concern about the effectiveness of the credit market 

in the study areas for smallholders with strict budget constraints. The ability for farm households 

to access commercial credit commenced in 1993 and has been further expanded with 

concessional interest rate loans to purchase machines, mechanical equipment and materials. 

However, the policy is not as effective as anticipated for many reasons, including the limited 

credit availability, complicated and inconsistent application procedures, and a high interest rate 

for agricultural credit (Marsh et al. 2006; OECD, 2015).  

The effect of farm size on technology use, in general, is as expected with many of the 

estimated coefficients showing a very high level of significance. The adverse impact of farm 

size on the average level of input technologies use is consistent with the increasing returns to 

scale theory where producers with more farmland are often able to make better use of inputs 

than that are politically regulated or suggested by suppliers and government agencies (Banerjee, 

2000). As a result, increasing returns to larger scale of production may bring an improvement 

in farming outcomes such as increases in productivity and household income as observed in the 

study (Appendices 2D and 2E).  

Among the remaining variables, the factors associated with input and output markets 
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such as labour and farm-gate prices for rice, in general, positively and significantly affect how 

much input technology a producer uses, given that the adoption decision has been made. Our 

finding confirms the positive relationship between sale prices and the level of agricultural 

technologies used by farmers in many previous studies (Bezu et al., 2014; Feder et al., 1985; 

Ricker-Gilbert et al., 2011). This result is plausible because farmers are willing to apply input 

technologies in their farms to boost productivity when they expect output prices to be higher. In 

contrast to expectations, producers’ access to extension services is, in general, not significantly 

correlated with the amount of input technologies used. In Vietnam, the main channel providing 

information to farmers is the extension system, which was officially established in 1993, the 

first year of the panel dataset. Agricultural extension has a strong production focus associated 

with the introduction of new seed varieties, special production techniques and information 

related to new policies and market prices. However, due to resource constraints the role of 

extension services in Vietnam in supplying necessary information to producers is still quite 

limited (OECD, 2015).  

In addition, better overall socio-economic conditions such as stronger food demand and 

a favourable labour market are expected to encourage farmers to invest more in their farmland. 

In the study, these macro-level factors including an increasing agricultural wage and a growing 

urban population have a strong impact on expenditure on agricultural technologies, as expected. 

The real wage growth in agriculture is highly significantly associated with increasing 

investments in agricultural technologies. Wage growth puts a great burden on agricultural 

production so that farmers have to rely on labour-saving technologies to maintain their returns 

from farming activities.  

It is important to note that the two estimation stages introduce some degree of flexibility 

that allows us to distinguish between factors associated with the decision to apply a technology 

and those related to the level of technology use (Burke et al., 2015). It is evidence that 
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landholding size is positively associated with decision-making to use agricultural innovations, 

but negatively affects the intensity of applying those technologies.  

In general, combining the results of the first two steps, it is evident that farm size and 

prices of hired labour and output, as well as macro-level factors, are the main factors driving 

agricultural technology changes over time in the study areas. Not surprisingly, by using the 

Seemingly Unrelated Regression (SUR) approach, strong evidence of the cross-correlation 

among the decisions to use agricultural technologies has been found through the very high 

statistical significance level of their co-variances. That confirms our hypothesis of the 

simultaneous relationships among technology uses within an individual farm. Follow-up policy 

interventions should account for the interrelationships in the decision-making process of 

smallholders to apply agricultural advances, recognising household budget constraints. 

2.6.2 Robustness check 

Several model diagnostics, including statistical tests for multicollinearity and 

heteroskedasticity have been conducted in this study, because in the regression model various 

kinds of misspecification such as heteroskedastic errors or omitted variables could lead to biased 

or inconsistent estimators (Yatchew and Griliches, 1985). In our case, due to the significant 

spatial-temporal variations in farm and farmer characteristics and farming strategies it may be 

expected that there is correlation among explanatory variables and heteroskedastic disturbances 

in the sample. If the estimation models violate any assumption of those tests, the estimated 

results would be biased. 

Firstly, potential correlations among explanatory variables were investigated using 

Pearson’s correlation matrix. The Pearson’s correlation coefficients show no perfect linear 

relationship between variables (see Appendix 2F for estimated results). The largest coefficient 

is 0.6189, at 1% significance level, representing the correlation between labour wages and 
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predicted value of inverse Mills’ ratio of machinery. Thus, the correlation among variables does 

not seem particularly high, but it is still necessary to test for multicollinearity. If a higher degree 

of multicollinearity presents in the dataset, the estimated coefficients and standard errors are 

more volatile, unstable and difficult to interpret.  

To detect multicollinearity, two well-known indicators were used: Tolerance, which is 

correlation between variables, and Variance Inflation Factor (VIF), the level of estimated 

coefficients being inflated by multicollinearity.6 Our estimated results confirm a low level of 

multicollinearity in the models as the largest value of VIF is 7.18 (equivalent to tolerance of 

0.139) from the labour wages variable (Appendix 2C). After testing for heteroskedasticity, the 

results of the Breusch-Pagan test reject the underlying assumption of homoscedasticity at 1% 

significance level in the estimation models (Appendix 2C).7 Thus, robust standard errors are 

applied when regression models are estimated. Also, correlation among the four practices used 

in the Seemingly Unrelated Regression model was allowed because it is suspected that the 

decisions may be interrelated. Consequently, the test results confirm the statistically significant 

interrelationships among these decisions to use agricultural practices (Table 2.4).   

2.7  Conclusion and policy implications 

This chapter examines the general patterns of agricultural technology changes and 

identifies factors that are likely to be associated with those changes in Vietnam. Using a rich 

20-year longitudinal dataset from a nationally representative sample of households, four 

agricultural practices were investigated: use of new seed varieties, use of chemical fertilisers, 

use of pesticides and use of machinery by rice producers. Technology change and its 

                                                                 
6 The indicators are calculated using Stata user-written program ‘collin’ from Philip B. Ender, UCLA Department 

of Education. 
7 We apply Stata user-written program ‘regcheck’ from Mehmet Mehmetoglu, Norwegian University of Science 

and Technology. The test output is provided in Appendix 2C. 
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determinants were analysed by a two-stage procedure considering the probability of rice farmers 

being users of particular agricultural practices and also the intensity of the practice used by 

farmers, conditional on several factors that may affect that decision-making process. Sample 

selection bias and unobserved heterogeneity were controlled, as well as for endogeneity and 

simultaneity associated with the inter-temporal changes of those agricultural technologies. 

The findings indicate that there have been significant changes in the pattern and 

determinants of the use of four agricultural practices applied by rice farmers across regions of 

Vietnam. A general increase over time in the percentage of farmers using improved seeds and 

machinery has been observed while use of pesticides and chemical fertilisers has been flat, with 

signs of a slight decline in recent years. Findings on the degree of use of these agriculture-related 

practices reveal increases at different rates in the use of those practices over time. In addition, a 

farmer’s decision to apply agricultural practices is strongly affected by farm size, input and 

output prices and by macro-level socio-economic conditions such as average agricultural wage 

and urban population as a proportion of total population. Household size and access to credit 

show limited effects on rice producers’ use of the four practices. Considering factors influencing 

the level of technology use, the results indicate that land ownership, farm size, and labour and 

farm-gate prices have statistically significant effects on the demand for agricultural technologies 

adopted. As expected, it is evident that macro-level variables such as the stronger food demand 

from growing urban population and the increasing agricultural wages are very likely to be 

associated with the level of agricultural advances used by farmers.  

Overall, the study highlights that farm size, cost of hired labour and output prices, as 

well as macro-level variables, are the main factors driving agricultural technology changes in 

Vietnam over many years. Not surprisingly, it exists strong evidence of cross-correlation among 

decisions that have been made by individual farming households to apply various agricultural 

technologies.  
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It is important to note that Vietnamese farmers have been operating their farms under a 

continuously transforming policy environment over recent decades. Such policy transitions have 

contributed significantly to shaping the agricultural sector, increasing productivity and 

enhancing rural producers’ income. However, findings from this study also show weak and 

uncertain spillover effects from other government policies aimed at improving access to credit 

and extension services on agricultural technology changes in the study area. Focusing on 

improving the performance of the credit market, as well as access to technological information, 

could help promote agriculture-related technologies to improve farmers’ wellbeing. Developing 

land markets to allow larger-scale land acquisitions is necessary to facilitate labour-saving and 

productivity-improving technologies such as mechanisation in the agricultural sector. In 

addition, our findings confirm the simultaneous interrelationships among decisions to apply 

agricultural practices within an individual farm. Follow-up policy interventions should account 

for those correlations in an individual smallholder’s decision-making process to apply 

agricultural advances. 
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Chapter 3 

 

Farming in changing production conditions: Evidence of climatic 

change in Vietnam 

 

 

Abstract 

Changes in climatic conditions can have a significant impact on both natural systems and human activities. This 

research provides a better understanding of the spatio-temporal variations in underlying climate processes and the 

potential effects on Vietnam’s agricultural sector. In this study, statistical methods with geostatistical techniques 

were combined to graphically represent the distribution of climate patterns, identifying variations and trends over 

time, and testing the statistical significance of those changes. By using records of monthly precipitation and 

temperature for a relatively long-term period (1975 to 2014) over the high density of 112 meteorological stations 

across the country, robust visual and statistical evidence of climatic change throughout Vietnam were provided. 

The visual analytics show remarkable changes in the spatio-temporal distribution patterns of rainfall and 

temperature. The Mann-Kendall trend test confirms the statistically significant long-term trends in most of the 

‘hotspot’ areas identified by geostatistical mapping. The long-term significant trends were in areas with very high 

proportions of agricultural land, particularly land used for rice production in the Red River and Mekong River 

deltas. The findings deliver a better understanding of underlying climate processes and impacts across regions of 

Vietnam and provide a basis to develop effective climate-related policies for agricultural production in response to 

changing climatic conditions. 

 

Keywords: Climate change, spatio-temporal pattern, geostatistical and statistical methods, agricultural production, 

Vietnam 

JEL codes: C25, Q12, Q54 
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3.1 Introduction 

Climatic conditions are changing across the globe but vary in direction, frequency and 

intensity by location. The Intergovernmental Panel on Climate Change notes that globally 

averaged surface temperature shows an increasing linear trend of 0.85 °C between 1880 and 

2012 (Stocker et al., 2014). But, changes in average precipitation have not been spatially and 

temporally uniform, with decreases in mid-latitude areas and increases in other latitudes (IPCC, 

2007). It is also very likely that weather and climate extreme events have increased in frequency 

and intensity on a global and local scale (Caesar et al., 2011; Pingale et al., 2014). Observed 

changes in the climate system are having major effects on natural systems as well as on human 

activities.   

Vietnam is being affected by climatic variability and change (Thomas et al., 2010b). 

From the 1970s, the recorded average temperature of the country has increased by 0.26±0.10 °C 

per decade, twice the rate of global warming for the same period (Nguyen et al., 2013). Also, 

total annual rainfall is dominated by a negative trend in five out of eight climatic zones of 

Vietnam (Nguyen et al., 2013). Changes in climate have also intensified the incidence and 

magnitude of extreme events such as floods, droughts and typhoons. It has been estimated that 

climatic change may directly affect about 10-12% of Vietnam’s population and lead to the loss 

of approximately 10% of Gross Domestic Product (VNGP, 2011). More importantly, the 

country’s most climate-dependent activity – agricultural production – still dominates Vietnam’s 

economy, accounting for 22% of GDP and 54% of the labour force (GSO, 2014).  

The primary goal of this study is to identify empirically evidence of climate change and 

potential effects of those changes on the agricultural sector of Vietnam, particularly for rice 

production. The comprehensive approach of combining statistical testing with geostatistical 

techniques enables climate patterns to be mapped at a very fine resolution to identify changes 

and trends over years and statistically confirm their significance. Comparing evidence-based 
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observed climate changes with the spatial pattern of agricultural land use across Vietnam will 

help inform decision-makers and communities on the likely effects of the changing climate. 

A better understanding of the pattern of climatic variability and change at various spatial 

and temporal scales is crucial to supply rigorous evidence-based information to policy-makers 

at all levels in the decision-making process and to guide the development and implementation 

of appropriate adaptation responses (Conway et al., 2015; Nam et al., 2016). At the global and 

regional scales, a substantial number of studies have investigated and documented the changing 

patterns of climatic variables across space and time (Kundu et al., 2015; Nam et al., 2016; 

Portmann et al., 2009; Qureshi et al., 2014; Río et al., 2011; Stocker et al., 2014). 

Although there have been some empirical analyses on general climatic conditions in 

Vietnam, there are a limited number of studies investigating the spatial and temporal patterns of 

climatic change (Caesar et al., 2011; Griffiths et al., 2005; Lau and Yang, 1997; Nguyen et al., 

2013; Nguyen et al., 2007). Lau and Yang (1997) reported the climatology and annual variability 

of the Southeast Asian Monsoon using monthly data, with very general information for Vietnam. 

Griffiths et al. (2005) used the daily maximum and minimum temperature of the Asia-Pacific 

region to statistically test the trends of changes across countries. For Vietnam, Griffiths et al. 

(2005) found a significant increase in minimum temperature and a significant decrease in the 

variability of minimum temperature. This is a notable attempt to analyse the spatial patterns of 

temperature in Vietnam; however, since only four weather stations were included in the study, 

its spatial coverage is limited. Nguyen et al. (2007) standardised the monthly sea-surface 

temperature in the tropical Pacific and the Indian Oceans and precipitation over the central 

highlands of Vietnam and found a significant relationship between monthly sea-surface 

temperature and precipitation patterns for different months of the rainy season. Due to the 

limitation of available data, the study covered a relatively short period of only 21 years, from 

1980 to 2000. Recently, Nguyen et al. (2013) contributed to explaining the changes in 



51 

 

climatology across regions of Vietnam. In their procedure, they have used the Mann-Kendall 

trend test, a practice that was applied in the current study.8 Based on weather data from 60 

gauges, the study found a constant increase over time of average temperature and adverse trends 

of rainfall variability in different sub-regions. Yet, with its focus on the national and regional 

level, the study leaves a gap for further analysis using a higher level of resolution such as 

disaggregated local or weather station-level data. In this study, this gap was addressed by using 

long-term weather station records of meteorological data for the 40-year period of 1975 to 2014 

and a higher density of land-based weather stations across regions of Vietnam.  

Recent climatic observations suggest that climate in Vietnam is changing rapidly and 

there is a growing interest to analyze climatic patterns to establish the nature of adverse impacts 

of climatic variation on climate-exposed production sectors, such as agriculture. This study adds 

value to the literature investigating changes in climatic conditions in Vietnam in several ways. 

By integrating statistical and geostatistical techniques, this study provides new evidence of 

ongoing climate change, both temporally and spatially, and captures the complex distribution 

of climatic elements. Using records of monthly precipitation and temperature for 1975 to 2014 

at 112 meteorological stations across Vietnam, climate data and its spatio-temporal variations 

and trends were first updated and visually represented by applying geostatistical techniques to 

generate surface maps of precipitation and temperature patterns in the areas of interest. Then, 

climate anomalies were extracted from the long-term average of climate, which is defined as a 

baseline of 30-year averages (1975-2004) of climatological variables. Finally, the output of this 

step provides a visual representation of the spatial distribution, and also the evolution of climatic 

variables in recent years compared to climate ‘normals’.  

As the mapping approach could only supply a ‘snapshot’ of climate patterns at a given 

point in time, another question is whether the observed patterns or trends are significant over 

                                                                 
8 The Mann-Kendall trend test is a non-parametric test used to statistically detect a long-term trend in a series of 

values. Further discussion of this method is provided in the following sections. 
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time. To address this issue, the Mann-Kendall trend test was applied, carefully controlling for 

the non-homogeneity problem which may cause biased estimates for the observed 

meteorological time series (Buishand, 1982; De Paola and Giugni, 2013; Jaiswal et al., 2015; 

Meshram et al., 2016; Nam et al., 2016; Viola et al., 2014). The non-parametric test confirms 

the presence of long-run negative or positive trends, which may be observed through mapping, 

in the homogenous climatic variables.  

The study is structured as follows. Section 3.2 provides an overview of the study area, 

data and workflow used in this study. Section 3.3 specifies the research methods applied, and 

empirical findings are discussed in Section 3.4. Section 3.5 draws some concluding remarks.  

 

3.2 Study area, data and workflow 

3.2.1 Study area 

Located in the tropical zone of the Northern Hemisphere, Vietnam is characterised with 

a tropical monsoon climate influenced by the Southeast Asian Monsoon circulation (Nguyen et 

al., 2013; UNEP, 2009). As Vietnam extends across 15 degrees of latitude from 8.30 degrees 

north to 23.22 degrees north, the country’s climatology varies significantly between North, 

Central and South. Thus, the country is characterised by seven climate zones: Northwest (B-I), 

Northeast (B-II), Northern Delta (B-III), North Central Coast (B-IV), South Central Coast (N-

I), Central Highlands (N-II) and Southern Delta (N-III) (Figure 3.1). The Vietnamese territory 

covers a mainland of about 332,000 square kilometres and a large area of water. The complexity 

of topography is shown in the digital elevation model in Figure 3.2. Vietnam’s geographical 

features together with the complex topography make the spatial distribution of climate patterns 

even more diverse. More specifically, precipitation in Vietnam has large variations across time 

and space (Nguyen et al., 2013). Also, temperature has been rising at an increasing rate in many 

regions over the recent period (UNEP, 2009). 
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Figure 3.1 Spatial distribution of 112 meteorological stations and 

climate zones in Vietnam 
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Note: The digital elevation model of Vietnam was extracted from the United States Geological 

Survey digital elevation model raster database. 

 

Figure 3.2 Digital elevation model (DEM) of Vietnam 
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3.2.2 Data 

A dataset of average monthly temperature and precipitation at 112 meteorological 

stations across Vietnam for the 40 years from 1975 to 2014 was obtained from the Vietnam 

National Centre for Hydro-meteorological Forecasting. As rainfall and temperature are the most 

important elements of climate, we focus on these two variables in this analysis. The 112 land-

based weather stations in the study were selected from a total of 250 weather stations nationwide 

by taking into account data availability, timeframe consistency and the spatial distribution of 

these stations in order to best represent climatic patterns and to minimise the impacts of missing 

data. 

The availability of observed meteorological data varies significantly across regions, 

especially for some areas in the North and the South where records were discontinuous due to 

the war in the 1970’s. In addition, record length is not uniform across stations with differences 

in the beginning and end date of records. The most common timeframe, 1975 to 2014, was 

chosen for further investigation. Stations where missing values exceeded 5% of total 

observations were excluded from the analysis (Río et al., 2011). As a result, 112 weather stations 

widely distributed across different climatic regions of Vietnam were used in the analysis. The 

locational co-ordinates of the weather stations in the study are shown in Table 3.1, generally 

presented in an order from north to south.  

Our dataset, based on 112 weather stations across various regions has an advantage over 

many previous studies (such as Nguyen et al. 2007; Nguyen et al. 2013; Thomas et al. 2010) 

due to its higher station network density. Using a denser network of observations is expected to 

deliver better spatial coverage and substantially improve accuracy, particularly for interpolation 

techniques for climatic variables (Jones et al., 2009; Sayemuzzaman, 2014).   
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Table 3.1 List of 112 climate stations in the study 

No. 

Station 

name Longitude Latitude 

 

No. Station name Longitude Latitude 

1 Muong Te 102.5 22.22  29 Chiem Hoa 105.16 22.09 

2 Sin Ho 103.14 22.22  30 Ham Yen 105.02 22.04 

3 Tam Duong 103.29 22.25  31 Tuyen Quang 105.13 21.49 

4 Than Uyen 103.53 21.57  32 Bac Can 105.5 22.09 

5 Dien Bien 103 21.22  33 Ngan Son 105.59 22.26 

6 Lai Chau 103.09 22.04  34 Dinh Hoa 105.38 21.55 

7 Tuan Giao 103.25 21.35  35 Thai Nguyen 105.5 21.36 

8 Bac Yen 104.25 21.15  36 Phu Ho 105.14 21.27 

9 Co Noi 104.09 21.08  37 Viet Tri 105.25 21.18 

10 Moc Chau 104.41 20.5  38 Vinh Yen 105.36 21.19 

11 Phu Yen 104.38 21.16  39 Bao Lac 105.4 22.57 

12 Quynh Nhai 103.34 21.51  40 Cao Bang 106.15 11.4 

13 Son La 103.54 21.2  41 Trung Khanh 106.31 22.5 

14 Song Ma 103.44 21.04  42 Huu Lung 106.21 21.3 

15 Yen Chau 104.18 21.03  43 Lang Son 106.46 21.5 

16 Chi Ne 105.47 20.29  44 That Khe 106.28 22.15 

17 Hoa Binh 105.2 20.49  45 Bac Giang 106.13 22.18 

18 Kim Boi 105.32 20.4  46 Luc Ngan 106.33 21.23 

19 Lac Son 105.27 20.27  47 Son Dong 106.51 21.2 

20 Mai Chau 105.03 20.39  48 Cua Ong 107.21 21.01 

21 Bac Quang 104.52 22.3  49 Tien Yen 107.24 21.2 

22 Ha Giang 104.58 22.49  50 Uong Bi 106.45 21.02 

23 Bac Ha 104.17 22.32  51 Phu Lien 106.38 20.48 

24 Lao Cai 103.58 22.3  52 Ha Dong 105.45 20.58 

25 Sa Pa 103.49 22.21  53 Lang 105.51 21.02 

26 Luc Yen 104.43 22.06  54 Hai Duong 106.18 20.56 

27 MuCangCha 104.03 21.52  55 Hung Yen 106.03 20.39 

28 Yen Bai 104.52 21.42  56 Nam Dinh 106.09 20.24 



57 

 

No. 

Station 

name Longitude Latitude 

 

No. Station name Longitude Latitude 

57 Van Ly 106.18 20.07  85 Quang Nam 108.15 15.20 

58 Thai Binh 106.21 20.27  86 Quang Ngai 108.48 15.07 

59 Nho Quan 105.44 20.20  87 Binh Dinh 109.02 14.31 

60 Ninh Binh 105.58 20.14  88 Binh Dinh 109.13 13.46 

61 Hoi Xuan 105.07 20.22  89 Phu Yen 109.17 13.05 

62 Nhu Xuan 105.34 19.38  90 Khanh Hoa 109.12 12.13 

63 Thanh Hoa 105.47 19.45  91 Ninh Thuan 108.59 11.35 

64 Tinh Gia 105.47 19.27  92 Binh Thuan 108.06 10.56 

65 Yen Dinh 105.40 19.59  93 Kon Tum 108.00 14.3 

66 Con Cuong 104.53 19.03  94 Gia Lai 108.01 13.58 

67 Do Luong 105.18 18.54  95 Dak Lak 108.03 12.40 

68 Quy Chau 105.07 19.34  96 Dak Nong 107.41 12.00 

69 Quy Hop 105.09 19.19  97 Lam Dong 107.49 11.32 

70 Quynh Luu 105.38 19.10  98 Lam Dong 108.27 11.57 

71 Tay Hieu 105.24 19.19  99 Binh Phuoc 106.54 11.32 

72 Vinh 105.40 18.40  100 Binh Phuoc 106.59 11.5 

73 Ha Tinh 105.54 18.21  101 Tay Ninh 106.07 11.2 

74 Huong Khe 105.43 18.11  102 Ba Ria-V.Tau 107.05 10.22 

75 Ky Anh 106.17 18.05  103 Long An 105.56 10.47 

76 Ba Don 106.25 17.45  104 Tien Giang 106.24 10.21 

77 Dong Hoi 106.37 17.29  105 Dong Thap 105.38 10.28 

78 Dong Ha 107.05 16.51  106 Tra Vinh 106.12 9.59 

79 Khe Sanh 106.44 16.38  107 An Giang 105.08 10.42 

80 A Luoi 107.17 16.13  108 Can Tho 105.46 10.02 

81 Hue 107.35 16.26  109 Soc Trang 105.58 9.36 

82 Nam Dong 107.43 16.10  110 Kien Giang 105.04 10.00 

83 Da Nang 108.12 16.02  111 Bac Lieu 105.43 9.17 

84 Tam Ky 108.28 15.34  112 Ca Mau 105.09 9.11 
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Maps of agricultural land use and cultivated area of rice obtained from the Vietnam 

General Statistics Office are used to determine the likely effects of climate change on 

agricultural production in the study area (Figures 3.3 and 3.4). Based on data collected from the 

2001 Rural, Agriculture and Fisheries Census, this map shows the spatial distribution of 

agricultural land at the commune level across the country. Agricultural land is defined as the 

land area that is used for annual crops (e.g. rice and maize), perennial crops (e.g. rubber and 

coffee), and pasture grassland.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Proportion of agricultural land in Vietnam 
Source: Vietnam Statistics Office, GSO 
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Figure 3.4 The spatial distribution of total land area and planted area of rice 

over ten years (2005-2014) at the province-level 

Source: Author’s calculation based on data from General Statistics Office 2014 
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Figure 3.3 shows that the Red River Delta in the North and the Mekong River Delta in 

the South have the highest proportion of land used for agricultural production. A relatively high 

percentage of agricultural land is also identified in many communes along the coast whereas the 

mountainous areas of the Northwest and Northeast and in the Central Highlands have the lowest 

percentages of land used for agriculture (Figure 3.3). Figure 3.4 shows the distribution of the 

cultivated area of rice in Vietnam over the last ten years (2005-2014). In the agricultural sector, 

crop production is dominated by rice as a major annual crop with an average total planted area 

of 7.8 million hectares per year over that period (GSO, 2014). It is clear that the Red River Delta 

in the North and the Mekong River Delta in the South have the largest planted area of rice, 

accounting for 15.2% and 52.8% of total planted area of rice for the whole country, respectively 

(Figure 3.4). Some provinces such as Kien Giang, An Giang and Dong Thap in the South and 

Thanh Hoa, Nghe An and Thai Binh in the North have been identified as the major rice 

production areas of Vietnam. However, agricultural production, especially rice cultivation, is 

inherently vulnerable to climate change due to very large acreage under rice with direct exposure 

to climatic conditions across all regions in Vietnam. Consequently, climatic variability and 

change are likely to be especially challenging for rice production in Vietnam. Therefore, the 

effects of climate change on agricultural production were considered with a special focus on 

rice cultivation. By comparing the spatial distribution of land use and climate patterns, it is 

possible to identify potential effects of changing climatic conditions on the agricultural sector 

in Vietnam. 

3.2.3 Workflow 

Figure 3.5 illustrates the three-stage workflow procedure: data collection, data 

homogenisation and data analysis. For data collection in Step 1, the dataset was separated into 

two different periods: 1975-2004 for 30-year averages representing climate normals, and 2005-

2014 to indicate current climate. According to the World Meteorological Organization, climate 

normals are typically defined as the three-decade averages of meteorological parameters 
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including temperature and precipitation (Arguez and Vose, 2011). Since those measurement 

values of climate normals reflect the long-term meteorological conditions or climatology, they 

are used to compare a value of a meteorological variable (e.g. temperature or precipitation) to 

their corresponding reference value (i.e. climate normal value). Those comparisons allow 

identification of changes in the climatic conditions, long-term trends over years, and shifts in 

spatial patterns of the climatic variable of interest. In this study, by separating the climate data 

series into two different periods, climate normals and current climate, it is possible to examine 

the pattern changes of climate-related variables in the current period compared to its relatively 

long-term average. 

 Figure 3.5 Three-stage workflow in data collection, homogenisation and analysis 

•Select meteorological stations

•Check data quality and handle missing data

•Create datasets for climate normals (1975-2004) 
and current climate (2005-2014)

Data collection

•Test for homogeneity of data series (Pettitt's test, 
SNHT test, Buishand's test, von Neumann's test)

•Classify data series according to test results
Data homogenisation

Data analysis
Visual analytics

Interpolate 
temperature 

and 
precipitation

Create spatial-
temporal maps 

of patterns

Statistical analysis

Mann-Kendall 
(MK) trend test

Create spatial 
distribution 

map of MK test 
results

Output: Homogenous meteorological data series 

Output: A completed set of temperature and precipitation 

data series at 112 stations (1975-2014) 
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The process of collecting climatic data at station-level has several constraints such as 

relocation of the stations and changes in observing practices that may result in discontinuous 

and unreliable data. Consequently, records of climate-related variables from that process, which 

are lack accuracy and continuity, may not be able to represent the uniform climatic conditions 

in the long-term period (Guttman, 1998). Thus, there is a need to assess the homogeneity or 

uniformity of climate data with respect to non-climatic factors before any analysis. Testing for 

homogeneity of meteorological time series is a fundamental prerequisite for climate change 

studies in order to distinguish data series that are affected by non-climate factors such as changes 

in observation practices, changes in instrumentation and station relocation (Alexandersson and 

Moberg, 1997; Longobardi and Villani, 2010). Non-homogenous data series implies that 

climate-related variables may not be representative of temporal climate variability and change. 

Since homogenous data is a prerequisite for the Mann-Kendall trend test, therefore different 

homogeneity tests based on long records of precipitation and temperature were applied, 

including Pettitt’s test, standard normal homogeneity test, Buishand’s test and Von Neumann’s 

test in Step 2 (Buishand, 1982; Jaiswal et al., 2015; Pettitt, 1979; Wijngaard et al., 2003). These 

tests were performed in R statistical software using the ‘climtrend’ package (Sinharay, 2016). 

In Step 3, a comprehensive approach integrating statistical testing with geostatistical 

techniques to examine the changes in temperature and precipitation patterns, identify any 

possible trends over time, and statistically test the significance of these trends was used. The co-

kriging interpolation technique in ArcGIS was used to produce smoothed surface maps of 

precipitation and temperature patterns and displays variations across space and time.9 Then, the 

Mann-Kendall trend test was applied using the R package ‘trend’ to statistically confirm the 

presence of long-run negative or positive trends, which might be observed through mapping, in 

these climatic variables of interest (Pohlert et al., 2016).  

                                                                 
9 Co-kriging is an interpolation technique that uses information on several variables to produce better 

interpolation maps. This method is discussed in detail in the next section. 
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3.3 Methodology 

To look for evidence of climate change across regions of Vietnam, several geophysical 

data visualisation and statistical methods were used. Precipitation and temperature series were 

first tested for homogeneity using a range of statistical tests. After these series were confirmed 

homogenous, the geostatistical techniques in ArcGIS software in conjunction with a statistical 

trend test using R software wee used to further explore any change in the patterns of observed 

climatic variables across space and time.  

3.3.1 Data homogenisation 

Homogenous data series of climatic variables are required in climate-related studies 

(Buishand, 1982). Numerous methods for testing for homogeneity have been introduced in the 

literature (such as Pettitt’s test, standard normal homogeneity test, Buishand’s test and Von 

Neumann’s test), but combining several methods has proved to be more efficient because each 

test has its own advantage in detecting any possible break or change point within the data series 

(Wijngaard et al., 2003). For instance, Pettitt’s test and Buishand’s test are more capable of 

detecting break points in the middle of the data series, while the standard normal homogeneity 

test is more sensitive to any change point at the beginning or end of that series (Hawkins, 1977; 

Wijngaard et al., 2003). Therefore, four tests were applied to better identify non-homogeneities 

with the null hypothesis of no break or change point in the data series. Calculation formulas for 

these tests are in Appendix 3A. 

These four tests for homogeneity could lead to different conclusions for an individual 

data series due to their differences in the power of detecting break points. It is therefore 

necessary to generalise those conclusions to determine whether or not that data series is 

homogenous. Following Wijngaard et al. (2003), data series were classified into different 
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classes according to their test results for the null hypothesis of no break or shift within that 

series. the outcomes of the four tests were grouped into three categories: 

Class A: ‘useful’ series if only one or none of the four tests rejects the null hypothesis at 

1% significance level. 

Class B: ‘doubtful’ series if two tests reject the null hypothesis at 1% significance level. 

Class C: ‘suspect’ series if three or four tests reject the null hypothesis at 1% significance 

level. 

Series classified in Class C were deemed non-homogenous time series and were not 

included in the next step due to the high probability of detecting a change point within these 

series. Thus, Class A and Class B were used in the next step for trend detection. The 

homogeneity tests and the classification of series are applied separately for temperature and 

precipitation data series and the results are reported in the following section.  

3.3.2 Visual analytics using geostatistical approach 

Geostatistical techniques have benefitted enormously from the development of 

Geographical Information Systems (GIS). In graphical representations of climate data, more 

user-friendly applications have been used widely by practitioners to accurately and efficiently 

model spatio-temporal patterns of climatic variables of interest (Johnston et al., 2001; Moral, 

2010). As climate data is only observed at certain places, there is a need to predict this 

information for other locations. Consequently, there is an increasing demand for interpolated 

surfaces of climate variables using weather station-level data with a wide range of geostatistical 

methods applied such as inverse distance weighting, kriging or co-kriging and kernel smoothing. 

Among those, co-kriging shows some advantages while cross-correlations between covariates 

(such as temperature and elevation) are taken into account to make better interpolation 
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predictions (Cressie, 2015; Moral, 2010; Ninyerola et al., 2000; Pardo-Igúzquiza, 1998; 

Prudhomme and Reed, 1999).  

In this study, temperature and precipitation were selected as the two main elements of 

climatology for the geostatistical analysis. These variables are examined at annual and monthly 

scales. For example, average total annual precipitation is calculated by adding the total 

precipitation over a specified period (such as 1975-2004 for a standard 30-year climatology and 

2005-2014 for current climate) and dividing by the total number of years for that corresponding 

period. Similarly, average monthly precipitation is equal to the sum of monthly rainfall totals 

divided by the total number of years for the period under study. For temperature, average annual 

mean temperature is calculated by adding annual temperature for a specified period and dividing 

by the number of years in that period (30 years for climatology and 10 years for current climate). 

Average monthly temperature is calculated by summing monthly values and dividing by the 

total number of years in the specified period. Climate anomaly is defined by the deviation of 

current climate from the 30-year climatology. 

In climate mapping, there is often a strong relationship between elevation and climatic 

variables such as temperature and precipitation: precipitation generally increases with elevation 

whereas temperature often decreases as elevation increases (Daly et al., 2008). In our study 

areas, due to the complexity of topography across weather stations, there may be correlations 

between meteorological variables and elevation at the same location. The co-kriging 

interpolation technique is used to map the spatial distribution of rainfall and temperature in 

connection with topographical features extracted from the digital elevation model.  

The theoretical basis and mathematical formulas of co-kriging have been discussed by 

Cressie (2015), Moral (2010) and Pardo-Igúzquiza (1998). This method predicts the unknown 

value of a primary variable of interest at a location using information on the measured values of 

that variable and on an auxiliary variable. The auxiliary variable such as elevation is expected 
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to have some correlation with the primary variable, so it can provide additional information for 

a better estimation value. The co-kriging technique takes into account the correlation between 

the primary and auxiliary variables and also the spatial correlation across observed values at 

various locations.  

The Geostatistical Analyst extension of the ArcGIS 10.4 software was applied to 

produce interpolated surfaces using the ordinary co-kriging method for the variables of interest. 

Then a set of interpolated map layers of rainfall and temperature for two periods (climate 

normals for 1975-2004 and current climate for 2005-2014) is generated for further analysis.  

Two variables were considered in this case: Z1 as a primary climatic variable and Z2 

which is derived from the digital elevation model as an auxiliary covariate of elevation at 

location (s). The ordinary co-kriging assumes the following models (Johnston et al., 2001; 

Journel and Huijbregts, 1978):10 

Z1(s) = µ1 + ε1(s) 

                          Z2(s) = µ2 + ε2(s),                          (3.1) 

where µ1 and µ2 are unknown constants; ε1(s) and ε2(s) are error terms with possible cross-

correlation and autocorrelation.   

Our goal is to predict the unknown value Z1 at location s0, Z1(s0), based not only on Z1, 

but also on the information in the covariate Z2 because there are often strong correlations 

between elevation Z2 and climatic variables Z1 such as temperature and precipitation. Thus, the 

primary variable Z1, autocorrelation for each variable, and cross-correlation between variables 

are used to yield more robust predictions of Z1(s0). The co-kriging predicted value
 01

ˆ
s

Z is a linear 

combination of all available data points of the two variables of interest (primary and auxiliary): 

                                                                 
10 Additional explanations of the co-kriging technique are in Cressie (2015), Johnston et al. (2001) and Journel 

and Huijbregts (1978).  
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where λ and δ are the spatial weights across data points in the sample Z1 and Z2. 

To obtain an unbiased predictor, the deviations between the predicted values and the 

observed points were minimised:  
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                 (3.3) 

After interpolating, a set of smoothed surface maps of each climatic variable for climate 

normals and current climate are exported. Unfortunately, the range of predicted values in each 

interpolated map of precipitation or temperature may vary significantly in different months and 

periods. For instance, the lowest and highest predicted values of temperature in December 

during winter are often significantly lower than those in July during summer. That makes the 

visual comparisons between those months using the maps of output rasters unreasonable due to 

the difference in the colour ramps automatically applied to each range of predicted values by 

ArcMap. Thus, there is a need for a standardising process that is able to capture and display all 

possible predicted values in the interpolated maps. This helps better visualise the interpolation 

outcomes and makes these graphics visually comparable across space and time.   

To address this, certain common criteria was set up for the output rasters, for example, 

projected coordinate systems (WGS_1984_UTM_Zone_48N), cell size (0.008333 x 0.008333 

~ 1km2), pixel type (signed 16 bit), and colour ramps.11 More specifically, to create a colour 

ramp, a unique colour was manually assigned for an individual group of predicted values, so 

that the ramp can cover all possible ranges of values of rainfall or temperature in different 

months or periods. The final interpolated maps are produced using a mosaic dataset technique 

                                                                 
11 Before creating an output for a raster dataset, the pixel type specifies the bit depth of that output. Here, the bit 

depth of signed 16 bit can contain a range of values around -32768 to 32767 in each pixel. A colour ramp 

provides a means to apply a range of specified colours to the corresponding range of values from the interpolated 

surface. 
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which contains our specified function chains to efficiently display the interpolated surface in 

connection with the site-specific topographical features.12 

In geoprocessing raw data for co-kriging and publishing outputs, our workflow contains 

a number of repeated steps applied to each month or a length of time of meteorological variables. 

Model Builder tool within ArcGIS provides the interactive means to accurately and efficiently 

reproduce these geoprocessing procedures. a base model was first constructed using Model 

Builder tool that was applied to one specific task, such as interpolating annual mean 

temperature. Then, all necessary modifications were made for the model (such as input and 

output sources and function parameters) to re-apply that process to another variable, as shown 

in Appendix 3B. This automating workflow allowed us to avoid mistakes that are likely to be 

associated with any error-prone geoprocessing procedure. 

3.3.3 Statistical analysis 

To integrate statistical and GIS techniques, a statistical trend test was applied on 

climatological variables to confirm the significance of the pattern changes observed through 

mapping. Long-term upward or downward trends in observed climatic variables were assessed 

using the non-parametric Mann-Kendall trend test (Kendall, 1962; Mann, 1945). The test is 

widely applied in the literature to statistically detect a long-term trend in meteorological time 

series (Viola et al., 2014; Zarenistanak et al., 2014). It is a non-parametric and rank-based test, 

so no assumptions are required for the underlying distributional properties (Kendall, 1962; 

Mann, 1945; Meshram et al., 2016). The test is based on a calculation of the Kendall’s Tau S 

statistic value under the null hypothesis of no trend existing in the series of records. Suppose 

that it exists a pair of observed values xi, xj (i>j) series of the meteorological variable of a 

                                                                 
12 A mosaic dataset can be used to combine multiple individual rasters and then display them in an exported map 

at once.  
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sequence x1, x2… xn with n observations. An S statistic value is calculated based on pairwise 

comparisons of each observed value j with all preceding observed data points i as: 
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             (3.5) 

Kendall (1962) assumes that S is approximately normally distributed with expected value 

E(S)=0 and variance Var(S): 
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where t is the extent of any given period. Thus, the standardised Z value could be calculated as 

follows: 
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                (3.7) 

 

The test is performed by comparing the absolute value of Z to the critical value of a standard 

normal distribution to identify the significance level of the trend.  
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3.4 Results and discussion 

3.4.1 Homogeneity tests 

The results of homogeneity analysis for meteorological data series are presented in Table 

3.2 based on the outcomes of Pettitt’s test, standard normal homogeneity test, Buishand’s test 

and Von Neumann’s test. These tests determine whether or not the observed time series at each 

station is homogenous at the 1% significance level. Ignoring the homogeneity property of these 

series could lead to biased results in data analysis (Vezzoli et al., 2012). 

As discussed in Section 3.3, data series were classified into three different classes based 

on the results of the four homogeneity tests. For precipitation, the majority of data series are 

Class A and Class B, i.e. homogenous, whereas Class C with 11.6% of the 112 stations is 

confirmed to be non-homogenous. In contrast, the series of temperature show a relatively large 

number of stations (33% of the 112 stations) characterised by non-homogeneity. Non-

homogenous data series of both precipitation and temperature (Class C) that make these 

variables unrepresentative of temporal climate variability and change are excluded from the 

procedure of geophysical data visualisation and statistical trend tests in the next step.  

 

Table 3.2 Results of homogeneity tests for meteorological data series 

Precipitation series  Temperature series 

Classes Homogeneity 

Number of 

stations 

%  Classes Homogeneity 

Number 

of stations 

% 

A Yes 78 69.6  A Yes 43 38.5 

B Doubtful 21 18.8  B Doubtful 32 28.5 

C No 13 11.6  C No 37 33.0 

Total 112 100%  Total 112 100% 
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3.4.2 Geostatistical analysis 

In visual analytics, the procedure as discussed in Section 3.2 was applied using the 

Geostatistical Analyst extension in ArcGIS combined with a mosaic dataset technique to 

produce and export the smoothed interpolated surfaces of rainfall and temperature. The 

outcomes are displayed as three consecutive digital maps of climate normals, current climate, 

and climate anomalies which is defined as the deviation of current climate from the normal 

climate. 

 

3.4.2.1 Observed precipitation patterns 

Analysis of mean annual precipitation changes 

The spatial distribution of average annual rainfall in both current and baseline periods 

varies considerably across regions (Figure 3.6). Some areas have seen an increase in 

precipitation while others have experienced a decrease. Generally, locations with high elevation 

such as the mountainous areas in the Northwest and Central Highlands receive higher rainfall. 

For climate normals, the highest rainfall is in the Northwest (B-I), North Central Coast (B-IV), 

Central Highlands (N-II) and the southernmost area of the Southern Delta (N-III). However, 

recent climatic conditions (2005-2014) have been changing remarkably with a growing drying 

pattern of precipitation observed in many regions such as the Northern Delta (B-III) and the 

South Central Coast (N-I) (Figure 3.6-b).   

The last map in Figure 3.6 representing rainfall anomalies demonstrates a dramatic 

heterogeneity in the distribution of precipitation change across regions. Rainfall deficit is likely 

to spread throughout the country with a number of ‘hotspots’ like the westernmost provinces in 

the Northwest (B-I), the Red River Delta (B-III), the North Central Coast (B-IV), the 

northernmost of the Central Highlands (N-II), part of the Mekong River Delta, and some regions 

in the coastal regions of the southern areas. In contrast, the north-western area of the country 
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shows a significant rainfall surplus with precipitation anomalies as high as 1100 mm. 

Furthermore, compared to long-term average, annual rainfall during recent years is also 

increasing considerably in Thua Thien Hue and Quang Nam provinces in the middle of the 

Central Coast (Figure 3.6-c).  

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 3.6 Spatial distribution of mean annual precipitation for climate normals (a), current 

climate (b), and climate anomalies (c) 
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In these ‘hotspot’ areas, very high proportion of land is used for agricultural production, 

particularly for rice. In the two largest deltas of the Red River and the Mekong River, rice 

accounts for 68.7% of the total 7.8 million hectares of the rice cultivated in Vietnam (Figures 

3.3 and 3.4). More importantly, significant changes in the pattern of rainfall are observed in 

some provinces with substantial areas of rice (Figure 3.4): Kien Giang (753,600 hectares), An 

Giang (625,800 hectares) and Ca Mau (127,400 hectares) in the Mekong area, Thanh Hoa 

(258,600 hectares) and Thai Binh (161,800 hectares) in the lowland areas of the North. 

Consequently, rainfall pattern changes in those provinces with large rice cultivation areas may 

affect agriculture activities including rice production. More specifically, there is a strong 

evidence of the influence of changes in rainfall patterns on crop yields, particularly yield 

reductions due to water scarcity in irrigated crops like rice (Nelson et al., 2009). Also, altered 

rainfall patterns are likely to be associated with the increasing intensity of extreme weather 

events, and pests and plant diseases in rice-growing areas (Rosenzweig et al., 2001).  

Overall, visualising the spatio-temporal distribution of precipitation delivers better 

results in displaying and highlighting the rainfall pattern changes and then identifying their 

potential impacts on agricultural production. However, since climate-related variables are 

associated with seasonality, these variables were further explored at monthly intervals to gain 

greater insight into the underlying distributions of climate processes.   

 

 

 

 

Analysis of total monthly precipitation changes 

The changes in the monthly precipitation patterns from region to region and over time 

are shown in Figure 3.7. The maps show the monthly variations of rainfall in Vietnam are 

extremely pronounced. For the first four months from January to April (Figure 3.7.1), the 

rainfall is relatively low and unevenly distributed all over the country. Slightly more rain has 

been recorded recently in March and April compared to the baseline of the 30-year average from 

1975 to 2004.   
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However, in the four months of the summer season there was a remarkable change in 

precipitation amount and its pattern (Figure 3.7.2). Rainfall from May to August shows very 

high rain totals in the Northwest (B-I), the Central Highlands (N-II), and the southernmost 

regions of the Southern Delta (N-III). Compared to climate normals, current climatic conditions 

during May to August clearly demonstrate different trends, including a substantial increase in 

total rainfall in the north-west of the country versus a significant decrease in total rainfall in the 

Central Highlands (N-II) and also in the rest of the north-western area.  

From September to December (Figure 3.7.3), the rainfall patterns move southward with 

higher precipitation observed in the Central Coast (B-IV and N-I), the Central Highlands (N-II) 

and the Southern Delta (N-III), while the northern regions of the country are dominated by drier 

conditions. In particular, the current climate of the Central Coast (B-IV and N-I) and southern 

areas shows a significant increase in the amount of rain in November and December. 

Considering climate anomalies from September onwards, there is now very strong evidence of 

rainfall variability and change from region to region. In Figure 3.7.3, that evidence can be clearly 

observed and is even more pronounced compared to previous periods by the noticeable rainfall 

deficit in the northern Central Coast (B-IV and N-I) and, simultaneously, a strongly increasing 

precipitation in the centre of Vietnam.  

Overall, there are remarkably sharp contrasts in the monthly distribution patterns of 

rainfall variability and change across regions of Vietnam. Clearly, more rainfall has been 

recorded in the northernmost areas in the first few months of the year and that phenomenon 

tends to move gradually to the South until the end of the year. At the same time, there is a 

significant decrease in precipitation in the Northwest (B-I) which also moves along the coast 

towards the southern areas of the country. These prominent patterns indicate that the complexity 

in spatio-temporal distribution of those changes has been well-captured using our visual 
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analytics approach. The implication is that Vietnam is likely to face more variations in climatic 

conditions. 

In Vietnam, the growing season for rice varies across regions and can extend from 1 

February to 30 December (VAAS, 2010). In the North, the winter-spring rice season starts from 

early February and continues to the middle of June. Considering rainfall anomalies during this 

period, more precipitation has been observed in the Northwest (B-I) whereas other areas exhibit 

notably less precipitation, especially in the month of June. This rainfall pattern change is very 

likely to have adverse impacts on rice cultivation in this season. For the spring-autumn season 

(June-November), a similar trend is observed in the early season but not for the last few months 

of the year of September, October and November.  

In contrast, in the Central Coast, it is hard to notice any significant climatic change 

during the winter-spring season for rice (February-May). However, in the spring-autumn season 

(June-October/December), the rainfall pattern changes dramatically combining both a decrease 

in the northern areas and a significant increase in many southernmost areas of the Central Coast. 

Those notable rainfall anomalies could have large detrimental effects on rice production in those 

regions. Similarly in the South, both increases and decreases in rainfall are observed across 

locations, with a very high rainfall deficit in the northernmost area of this region.  
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Figure 3.7.1 Spatial distribution of monthly precipitation for January to April for climate normals (a), 

                               current climate (b), and climate anomalies (c)  
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Figure 3.7.2 Spatial distribution of monthly precipitation for May to August for climate normals (a), 

                             current climate (b), and climate anomalies (c)   
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Figure 3.7.3 Spatial distribution of monthly precipitation for September to December for climate normals (a), 

                              current climate (b), and climate anomalies (c)   
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3.4.2.2 Observed temperature patterns 

Analysis of annual mean temperature 

Figure 3.8 shows the spatio-temporal changes of annual average temperature in 

different regions of Vietnam. Because Vietnam extends across 15 degrees of latitude from 8.30 

degrees north to 23.22 degrees north, its temperature pattern varies significantly between 

North, Central and South with a noticeably higher mean temperature in the southern areas 

which are closer to the equator. That temperature pattern is very likely to be similar in the two 

defined periods of the climate normals (1975-2004) and the current climate (2005-2014). 

During these times, the annual average temperature ranges between 11.95 and 30.34 °C. Lower 

mean temperatures are observed in the Northwest (B-I) and Central Highlands (N-II), whereas 

Figure 3.8 Spatial distribution of mean annual temperature for climate normals (a), 

                                     current climate (b), and climate anomalies (c)   

(a) (b) (c) 
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in the Southern Delta (N-III) and Central Coast (B-IV and N-I) the average temperature is 

typically warmer.    

Temporal shifts in observed temperature have been found across space while comparing 

the current climatic conditions with the 30-year average conditions, which is a robust signal of 

temperature variability and change in Vietnam (Figure 3.8-c). Climate anomalies in 

temperature show diverse patterns, mixing both increasing and decreasing trends in different 

locations where some areas may experience more warming or cooling than others. Long-term 

temperature increase is especially significant in the southernmost areas of the Central 

Highlands (N-II) where the magnitude of that variation could reach the highest level of 3.2 °C. 

In contrast, temperature decrease relative to the climate normals has dominated the regions of 

the Northwest (B-I) with the lowest decrease recorded of -2.3 °C (Figure 3.8-c). 

Overall, a pattern of increasing average temperature is observed in the rice-cultivating 

areas including the Red River and Mekong River deltas (Figures 3.4 and 3.8), which is likely 

to be especially damaging for rice due to the potential increase of drought intensity. More 

specifically, some provinces with large areas of rice cultivation such as Kien Giang and Ca 

Mau in the Mekong delta, Binh Thuan and Quang Ngai in the Central Coast, and Thanh Hoa, 

Nghe An, Thai Binh and Phu Tho in the northern areas experienced notable increase in 

temperature. Also, there is growing evidence that warming climate likely increases the severity 

of plant diseases and water shortages leading to a reduction in productivity (Harvell et al., 

2002). Thus, it is expected that the rice sector will be hard hit by the warming pattern. In 

addition, because only looking at annual mean temperature may miss the monthly changes 

across the year, the observed temperature series at the monthly scale were therefore further 

explored. The output is presented in Figure 3.9.  
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Analysis of monthly mean temperature 

Figure 3.9 shows the spatio-temporal distribution of mean temperature and its volatility 

at the monthly scale across the country. Changes in monthly temperature have been taking 

place across the whole country compared to the long-term climate normals. Specifically, 

observations of the warming patterns are the most common over time in many locations from 

the North to the South of Vietnam such as the Northern Delta (B-III), the South Central Coast 

(N-I), the Central Highlands (N-II) and the Southern Delta (N-III), except in the northernmost 

area of the country. The warming patterns in recent years compared with climate normals are 

observed over different months with an exception in June when a cooler pattern of mean 

temperature has been seen in the current climatic condition. 

Maps of the surface temperature anomalies depict even clearer trends of widespread 

patterns of increasing average surface temperature across the country, especially in the centre 

of the Northern Delta (B-III), the South Central Coast (N-I) and part of the Southern Delta (N-

III). Those variations in the temperature are the most direct sign that climatic conditions are 

changing (USEPA, 2016). Furthermore, the highest warming rate has been identified in the 

southernmost region of the Central Highlands and the Central Coast including Dalat, Ninh 

Thuan and Binh Thuan provinces. The temperature is over 5.1 °C warmer in the current climate 

compared to the long-run average (Figure 3.9.2-c).  

Overall, compared with the patterns for precipitation, the spatio-temporal changes in 

temperature show a more uniform tendency characterised by a warming pattern across regions. 

Visual analytics used in mapping the distribution of temperature contribute significantly to 

analysing the temperature series and identifying ‘hotspot’ areas.  
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Figure 3.9.1 Spatial distribution of monthly temperature for January to April for climate normals (a), 

                             current climate (b), and climate anomalies (c)   
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Figure 3.9.2 Spatial distribution of monthly temperature for May to August for climate normals (a), 

                               current climate (b), and climate anomalies (c)  
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Figure 3.9.3 Spatial distribution of monthly temperature for September to December for climate normals (a), 

                             current climate (b), and climate anomalies (c)  
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The spatially uniform increase in temperature during the growing season of rice across 

the country is likely to have adverse impacts on rice production. In general, the winter-spring 

rice season now experiences a warmer climate in most regions except the northernmost areas 

of the country (Figure 3.9.1). The warming pattern is even more intense for the spring-autumn 

season of rice during the period of June to October/November (Figures 3.9.2 and 3.9.3). Again, 

the Red River and Mekong River deltas are among the areas with the highest warming rate 

recorded. Since those two deltas are the primary rice production regions of the country, it is 

evident that temperature anomalies may have adverse impacts on rice production.   

3.4.3 Statistical analysis of trends 

The visual analytics using geostatistical techniques efficiently capture the variations 

from location to location and from year to year in climate-related variables. However, a 

question still remains whether these observed climate variations represent long-term trends 

over time and space or are just short-term movements in climatic conditions. Long-term 

upward or downward trends in observed climatic variables have been assessed using the non-

parametric Mann-Kendall trend test with a null hypothesis of no change point existing in the 

data series at the 10% significance level (Kendall 1962; Mann 1945). 

3.4.3.1 Trends in precipitation 

Figure 3.10 shows a map of trends in precipitation in the 1975-2014 time intervals. The 

map presents Z statistic values of the Mann-Kendall test representing the sign, magnitude and 

significance level of the long-term trends. The trend test results was also mapped together with 
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the climate anomalies map and the distribution of agricultural land to assess the results of the 

visual analytics approach and identify any potential impacts of climate change on the 

agriculture sector.  

The distribution of trend test results for precipitation shows a large and significant 

variation across the country combining positive significant trends, negative significant trends, 

and no significant trends in the data series (Figure 3.10). There is statistically significant 

evidence that out of 99 land-based weather stations, 23 stations show an increase in rainfall 

over 1975 to 2014 and 19 stations show a decrease. The majority of meteorological stations 

(57.6%) have insignificant long-term changes in precipitation. While some parts of Vietnam 

have had changes in the pattern of rainfall, the majority of these changes are statistically 

insignificant over a long period.  

Considering the magnitude of the changes in Figure 3.10, the pattern of increasing 

precipitation is relatively pronounced in the north-westernmost regions and the centre of the 

Central Coast (B-IV and N-I) of Vietnam. The magnitude of rainfall pattern change is moderate 

in the western areas of the Southern Delta (N-III). The decreasing pattern of rainfall is evenly 

distributed throughout the country with some noticeable rainfall-deficit areas such as part of 

the Northern Delta (B-III), the northernmost regions of the North Central Coast (B-IV), the 

Central Highlands (N-II) and the coastal side of the Southern Delta (N-III). 



87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Results of Mann-Kendall trend test comparing annual mean precipitation anomalies and the distribution 

of agricultural land in Vietnam 
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Comparing results of the statistical analysis in Figure 3.10 and visual analytics in Figure 

3.8, there is a very close connection between the pattern of changes obtained using 

geostatistical techniques and the results of the Mann-Kendall trend test. Specifically, most of 

those ‘hotspot’ areas, where significant changes in precipitation patterns have been identified 

by geostatistical mapping, have also been further confirmed by the statistical significance of 

the long-term shifts over time and space. For instance, the north-westernmost regions, the 

centre of the North Central Coast (B-IV), the northern South Central Coast (N-I) and the 

Central Highlands (N-II) were visually considered as the most prominent areas of precipitation 

anomalies and, consistent with results of the trend test, those locations also show statistically 

significant evidence of long-term increasing or decreasing precipitation. We can say that there 

is a robust evidence that Vietnam’s climate is changing, not only in certain short periods but 

also over long historical records of precipitation.  

The long-term significant trend in rainfall pattern is identified in areas where there are 

very high proportions of agricultural land. Specifically, the main farming area in the North is 

experiencing a significant decline in rainfall whereas the largest agricultural production area of 

the country in the South is experiencing both significant increases and decreases in rainfall in 

various locations. Thus, it is reasonable to expect that changes in the climatic conditions will 

be very likely to impact agricultural production in those areas.    

3.4.3.2 Trends in temperature 

The results of the Mann-Kendall trend test for temperature are displayed in Figure 3.11 

with the map of climate anomalies. In general, the test results show a uniform distribution of 

temperature pattern across regions because most parts of the country are likely dominated by a 

statistically significant warming trend. Over half (58.6%) of the meteorological stations show 

a statistically significant long-term increase in temperature, while only 14.2% of stations have 

a decreasing temperature and 26.6% of stations have no significant change (Figure 3.11). All 

decreasing stations are located in the northern parts of the Central Coast and the North of the 

country. However, the other stations are widely distributed across large parts of the country.  
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Figure 3.11 Results of Mann-Kendall trend test comparing annual mean temperature anomalies and  

the distribution of agricultural land in Vietnam 
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In terms of the magnitude of temperature change, the greatest increase has been identified 

in the centre of the North, the northernmost and southernmost regions of the Central Coast (B-

IV and N-I), and part of the Central Highlands (N-II) and the Southern Delta (N-III). The North 

of Vietnam has experienced the smallest change because these locations are far away from the 

equator and also characterised by complex topography (Figures 3.2 and 3.11).        

Integrating a statistical approach with the outcome graphics of geostatistical techniques 

was also applied to the temperature series (Figure 3.11). The outputs of the two approaches are 

highly correlated from region to region across the country. Thus, most areas with considerably 

pronounced pattern changes are also associated with statistically significant long-term trends 

verified by the Mann-Kendall test. However, no statistically significant change in temperature is 

identified in the northernmost of the country even though a substantial shift in the pattern is 

observed in the visual analytics. Generally, the long-term trends depicted in the findings of both 

geostatistical mapping and statistical testing used in this study provide important evidence of 

spatio-temporal changing climatic conditions throughout Vietnam. 

It is clear that most agricultural areas across the country are experiencing a warming 

pattern in climatic conditions, particularly the two largest rice production areas in the Red River 

and Mekong River deltas. Many other areas along the coast are also experiencing a long-term 

increase in temperature which is likely to have impacts on rice production.  

 

3.5 Conclusion 

Changes in climate have been observed across the globe, including in Vietnam. These 

observed shifts in climate patterns could have adverse impacts on natural systems and human 

activities such as agricultural production. Our study found robust evidence of the spatio-temporal 

trends of climate-related variables and identified their potential effects on agriculture in Vietnam. 

Records of monthly precipitation and temperature for a relatively long-term period (1975-2014) 
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over the high density of 112 meteorological stations across the country were used. Combining 

statistical methods with geostatistical techniques is efficient to graphically represent the 

distribution of climate patterns, identifying variations and trends over time and testing the 

statistical significance of those changes. 

The findings provide robust evidence of spatio-temporal climate variability and change 

in Vietnam. The visual analytics indicate that rainfall anomalies exhibit a dramatic heterogeneity 

across regions, in contrast to the ongoing spatially uniform warming in temperature in most parts 

of the country. The visual evidence of climate change in Vietnam was further assessed by the 

Mann-Kendall statistical test. The results confirmed that most of the ‘hotspot’ areas of rainfall 

and temperature identified by geostatistical mapping have statistically significant long-term 

changes over time. Thus, the findings confirm that ongoing changes in the climate in many areas 

throughout the country were not only represented by the variations of climatic elements in certain 

periods, but also by the long-term trends over many years.    

The long-term significant trends in rainfall and temperature patterns were identified in 

areas with very high proportions of agricultural land, particularly for rice production in the Red 

River and Mekong River deltas. Changes in the rainfall and temperature patterns are very likely 

to have some impacts on rice cultivation during the growing season due to the warming across 

the country and the surplus or deficit of rainfall in certain areas. Thus, it is expected that climate 

change will have impacts on the agricultural sector, including rice production in many regions 

of Vietnam. Unfavourable climatic conditions could result in increasing frequency and intensity 

of flooding, water scarcity and pests and plant diseases, which could lead to lower productivity 

in rice-growing areas. However, to what extent the changes in climate will affect rice 

productivity and how farmers will adapt to the changing climate is beyond the scope of this 

study. It leaves room for further analysis on climate change impacts and adaptation, which will 

be addressed in the following study.  
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Our findings contribute significantly to understanding of the underlying climate 

processes and possible impacts across regions of Vietnam. The evidence-based analysis provides 

a basis for developing effective climate-related policies to respond to ongoing climate change 

and help mitigate the adverse impacts of climate change on human social-economic processes, 

particularly agricultural production in rural areas. 
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Chapter 4 

 

Farming is adapting: Lessons for adaptation to climate variability and 

change across regions of Vietnam 

 

Abstract 

Farmers have a long record of adapting to changing production environments – including unfavourable climatic 

patterns – by using various agricultural adaptation practices. This paper employs a cross-sectional time series dataset 

from nationally representative households in Vietnam to investigate factors behind farmer’s choices to adopt soil 

and water conservation techniques for the purpose of adapting to climatic change. Probabilistic record linkage 

methods were used to find the best-matched observations from two sets of surveys (VARH and VLSS) to create a 

20-year panel dataset. Since farmers’ adoption decisions are inherently dynamic, a dynamic random-effects probit 

model was estimated, controlling for unobserved heterogeneity and state dependence. It is evident that weather 

shocks and long-run changes in temperature during the rice growing season are significant determinants of farmers’ 

choices to apply adaptation practices given that other factors that may affect producer behaviour are controlled. In 

addition, the decision to adopt in subsequent periods is strongly influenced by past adoption decision. Results also 

indicate that farmer’s experience, farm size, and access to weather and output price information are associated with 

households that have decided to apply conservation measures. Overall, this study delivers a better understanding of 

farmers’ decision-making process and its drivers in the face of changing climatic conditions, which is useful for 

practitioners and policy-makers to facilitate climate-resilient strategies to improve farmers’ adaptive capacity under 

climatic uncertainty. 

 

Keywords: Climatic uncertainty; adaptation; agriculture; longitudinal data; Vietnam 

JEL classifications: C25, Q12, Q54 
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4.1 Introduction 

Household livelihoods in developing countries, particularly smallholders in rural areas, 

depend heavily on agriculture as a predominant source of income. However, agricultural 

production is inherently vulnerable to weather shocks and long-term shifts associated with 

climate, and is subject to substantial climate-sensitive resource dependence (Baez et al., 2013; 

McElwee et al., 2010). Climatic change can manifest through different channels such as 

increasing temperatures, heavier precipitation or prolonged periods with very little or no 

precipitation, as well as more frequent and more intense weather-related extreme events (Below 

et al., 2010; Hisali et al., 2011). Vietnam is among the countries that are likely to be hardest hit 

by the impacts of climatic variability and change (WB, 2010). Starting from the 1970s, recorded 

average temperature across Vietnam has increased by 0.26±0.10 0C per decade, which is twice 

as much as the rate of global temperature rise for the same period (Nguyen et al., 2013). Also, 

annual precipitation has shown a declining trend in five out of eight climatic zones in Vietnam 

over the same period (Nguyen et al., 2013). Climatic uncertainty has also intensified the 

incidence and magnitude of extreme events such as floods, droughts and typhoons across 

Vietnam (VNGP, 2011).  

IPCC (2007) points out that countries with agriculture counting as a high proportion of 

the economy, such as Vietnam, are most susceptible to climate change. Climatic variability and 

change are likely to be especially challenging for rice growing – a key agricultural activity in 

Vietnam and other developing countries in Southeast Asia − given its direct exposure to 

variations in temperature and precipitation. As a result, ongoing changes in climatic conditions 

could impose large detrimental effects on the agricultural sector in many countries, including 

Vietnam, with implications for food security and household welfare (Di Falco and Veronesi, 

2011; Mendelsohn et al., 1994; Qureshi and Whitten, 2014; Thomas et al., 2010a; Yu et al., 

2013).  
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Adaptation is one of the options for reducing the adverse impacts of climate change 

(Deressa et al., 2009; Mendelsohn and Kurukulasuriya, 2007). Farming households have a long 

record of adapting to changing production environments, including unfavourable climatic 

patterns. It could be argued that farming is about constantly adapting to external conditions 

through the process of behavioural adjustments by individual farm households. Smallholders use 

complex, interactive, multidimensional and locally-specific adaptation processes, which are 

driven by various climatic, technological, economic, social and political forces. This results in a 

wide range of behavioural response strategies for climate change that have been identified in 

many empirical studies (IPCC, 2007). The most often quoted ones include diversification of 

crops and income sources, adjustment of various farm management practices, and 

implementation of soil and water conservation techniques. Among those, conservation of land 

and water resources is a promising method for adaptation of farming systems to various stresses 

(Kato et al., 2011; Sietz and Van Dijk, 2015). Some methods, such as terrace farming, soil bunds 

and conservation tillage, have been suggested as key strategies to reduce the effect of water 

shortages and worsening soil conditions that come as a result of climate change (Kurukulasuriya 

and Rosenthal, 2003). 

Most previous adaptation research has used cross-sectional datasets to investigate farmer 

behaviour under climatic variability and change. These micro-level studies focusing on 

implementation of adaptation practices provide insights into the effects that the characteristics 

of farms and farmers have on their adaptation decisions. They also investigate the effects of 

farmers’ perceptions about changing climatic conditions and explain what factors govern their 

decision-making process (Below et al., 2012; Ervin and Ervin, 1982; Maddison, 2007; Roco et 

al., 2014). However, many of these studies take a snapshot of the data at a given point in time. 

This implies that cross-sectional data are used to address issues that are inherently dynamic and 

require cross-section time series data analysis (Besley and Case, 1993; Doss, 2006; Sietz and 
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Van Dijk, 2015). Consequently, a major obstacle to better understanding the dynamic nature of 

behavioural change in adopting agricultural practices conducive to adaptation to climate change 

has been the lack of studies based on long time series cross-section data at the household level 

(Moser and Barrett, 2006). 

This study adds value to the existing literature by investigating factors behind farmers’ 

choices to adopt agricultural practices that aid adaptation to climate change, such as soil and 

water conservation techniques. The study exploits an extensive longitudinal dataset from the 

nationally representative sample of households in the Vietnam Living Standard Survey (VLSS) 

and the Vietnam Access to Resources Household Survey (VARHS) from 1992-2012. A 20-year 

panel with six waves across different agro-ecological locations in Vietnam allows us to model 

farmers’ choices over a relatively long period. Since decision-making processes on using 

adaptation practices are inherently dynamic, it is necessary to use longitudinal datasets to 

overcome the many constraints imposed by analyses based on purely cross-sectional data (i.e. 

lack of comparisons across time and inability to evaluate the effect of policies). To the best of 

our knowledge, this study is among very few empirical studies globally that explain the pattern 

of adopting climate change adaptation practices in agriculture using long panel data sets, and 

certainly is the first such study for Vietnam.13  

The dynamic choices that farmers make about adaptation practices were examined, 

controlling for unobserved household heterogeneity, initial conditions and state dependence. 

Unobserved heterogeneity refers to those unobservable factors such as farmers’ management 

ability and household wealth, whereas the initial condition problem refers to the simultaneous 

presence of both lagged dependent variable and unobserved effects in dynamic modelling. 

Moreover, Heckman (1981) indicates that choice behaviour may exhibit dynamics that could be 

                                                                 
13 Doss (2006) points out that there is a limited number of studies analysing the dynamic patterns of adoption 

agricultural technologies. Some have been done by Feder et al. (1985), Cameron (1999), Barham et al. (2004).  
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attributed to two sources: ‘true’ state dependence referring to persistence in choice behaviour 

due to the effect of the previous choice on the current decision, and ‘spurious’ state dependence, 

which is caused by unobserved household characteristics affecting the persistence in choice 

behaviour. It is often noted that previous choices made by farmers on agricultural practices may 

influence their decision to make those same choices again (Boere et al., 2015; Ervin and Ervin, 

1982; Feder et al., 1985; O'Neill and Hanrahan, 2011). This was referred to as state dependence 

in the present study. Panel data allows us to control for unobserved effects to overcome the 

‘spurious’ state dependence problem. Many estimation methods have been proposed in dynamic 

studies with a view to distinguish between ‘true’ state dependence and unobserved heterogeneity 

(Heckman, 1981; Orme, 2001; Rabe-Hesketh and Skrondal, 2013; Wooldridge, 2005). Some of 

those methods were applied in the ensuing empirical work. 

Dynamic choices over 20 years and the drivers of adaptation practices made by farmers 

to cope with the changing climatic conditions were empirically examined. Dynamic econometric 

modelling methods are applied to a long cross-section time series dataset at the household level, 

controlling for factors that may influence the decision-making process in order to isolate the 

effects of climate change on farmers’ choices. Findings from this study could be used to 

strengthen the adaptive capacity of rural households and farmers and also better inform policy-

makers in their agricultural policy-making activities to cope with future changes in the climate. 

The remainder of this chapter is organised as follows. Section 4.2 reviews the existing 

literature. Section 4.3 provides some background on climate change, agricultural production, and 

adaptation strategies for the changing climate in Vietnam. Section 4.4 presents the conceptual 

framework, followed by the empirical model and data in Section 4.5. Section 4.6 discusses the 

results and findings. Conclusions and policy implications are presented in Section 4.7. 
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4.2 Literature review  

There is a long and rich tradition of empirical research that seeks to explain farmers’ 

adoption of particular agricultural innovations (Knowler and Bradshaw, 2007). Feder et al. 

(1985) provide an extensive survey of the various theoretical and cross-sectional empirical 

studies on the decisions to adopt agricultural technologies and suggest some key explanatory 

factors affecting the process of adoption such as farm size, human capital, labour availability, 

credit constraints, land tenure, and supply constraints. Another important factor influencing the 

decision-making process pointed out by Adesina and Zinnah (1993) is farmers’ perception 

towards risk and uncertainty. Besides, Feder et al. (1985) also point out that empirical studies 

have rarely controlled for environmental effects like weather variations because these factors are 

often difficult to measure and quantify at appropriate spatial and temporal scales.  

However, recent research on agricultural adaptation to climate change has paid 

significant attention to environmental variables, due to the increasing concerns over climate 

change and its impacts on farming systems. Knowler and Bradshaw (2007) review the findings 

of 31 recent empirical analyses of farm-level adoption of some soil management and general 

practices consistent with conservation agriculture to explain how certain variables including 

rainfall and temperature tend to influence farmers’ decisions. In addition, Sietz and Van Dijk 

(2015) present a meta-analysis of 63 case studies that investigate the adoption of soil and water 

conservation measures. The meta-analysis reveals a multitude of factors that drive adoption 

decisions and highlights the adoption of soil and water conservation practices as an emerging 

way in which farmers adapt to global climate change. Several recent adaptation studies also focus 

on identifying the determinants of farmer behaviour to respond to climate variability and change, 

especially in Africa (Marenya and Barrett, 2007; Piya et al., 2013). For example, Maddison 

(2007) indicates that the process of adaptation to climate change at the farm level is driven by 

various factors, such as farmer experience and level of education, availability of agricultural 
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extension services and distance to output markets. Di Falco et al. (2011) examine the driving 

forces behind farm households’ decisions to adapt to climate change using a simultaneous 

equation model. The study found that the primary drivers behind adaptation processes are 

farmers’ access to credit, extension services and information (Di Falco et al., 2011). However, 

there is practically no previous work on the determinants of farmers’ dynamic behaviour on 

adaptation to climate change in Vietnam. Also, studies using long time series cross-section data 

to investigate dynamic behaviour are still lacking in the existing literature globally. This leaves 

a gap in the literature that the current study is aiming to fill.  

 

4.3 Background: Climate change, agricultural production and adaptation strategies in 

Vietnam 

4.3.1 Climate variability and change in Vietnam 

Vietnam is one of the countries most vulnerable to climatic variability and change 

(Adger, 1999). At the national scale, Nguyen et al. (2013) note a trend of increasing average 

temperature over the last several decades across regions throughout Vietnam. In addition, annual 

rainfall has declined in five out of eight climatic zones in Vietnam over that period. Further, 

stretching along over 15 degrees of latitude from 8.300N to 23.220N, the climatology varies 

significantly between North, Central and South Vietnam (UNEP, 2009).  

Our study sites include six provinces (Ha Tay, Lao Cai, Phu Tho, Nghe An, Khanh Hoa 

and Long An) across various agro-ecological regions that represent well the spatial distribution 

of climate patterns in Vietnam. Based on the recorded weather data at these study locations, 

Figures 4.1 and 4.2 show the long-term trend in temperature and rainfall during the rice growing 

season over 38 years from 1975 to 2012. More specifically, precipitation and temperature exhibit 

large variations across space and over time. Growing Degree-days (GDDs) was used to represent 
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long-run temperature conditions during the rice growing season. This variable shows a 

significant increase since 1975 (Figure 4.1). Cumulative rainfall during the rice growing season 

which shows a declining trend in many areas was also used (Figure 4.2). Further analyses of 

climatic conditions at our study sites are provided in Appendix 4C.  

 

 

Figure 4.1 Long-term trend in temperature represented by GDDs (0C) during the rice 

growing season at the study sites (1975-2012) 

Source: Author’s calculation based on data from the Vietnam National Centre for Hydro-

Meteorological Forecasting 

y = 13.76 x***+ 4005.9

2500

3000

3500

4000

4500

5000

5500

1
9

7
5

1
9

7
6

1
9

7
7

1
9

7
8

1
9

7
9

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

Longan Hatay Laocai
Nghean Khanhhoa Phutho
Linear (Trend)



101 

 

 

Figure 4.2 Long-term trend in cumulative rainfall (mm) during the rice growing season  

at the study sites (1975-2012) 

Source: Author’s calculation based on data from the Vietnam National Centre for Hydro-Meteorological 

Forecasting 

Changing climatic conditions have also intensified the incidence and magnitude of 

extreme events such as floods, droughts and typhoons across Vietnam (Figure 4.3) (VNG, 2007). 
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Figure 4.3 Extreme weather events and their damage in Vietnam (1975-2012) 

Source: The International Disaster Database, http://www.emdat.be 
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As drought is the most important extreme event that affects rice farmers, the Standardised 

Precipitation Index (SPI) (McKee et al., 1993) was applied to identify the variability, magnitude 

and duration of drought conditions. The advantage of the index is that it can effectively represent 

the amount of precipitation over time by comparing the observed rainfall with the rainfall 

climatology at a particular location. The index is scaled from negative values to positive values, 

with larger negative values indicating that drought is likely to be more severe. Based on our 

calculation, the index shows that there has been increasing severity and intensity of droughts in 

many study sites over time (Figures 4.4 and 4.5).14   

 

Figure 4.4 The trend of SPI averaged over the study sites (1975-2012) 

Source: Author’s calculation based on data from the Vietnam National Centre for Hydro-

Meteorological Forecasting 

The SPI across the six provinces surveyed shows a declining trend, which means that 

drought is likely to be more severe over time in the study sites (Figure 4.4). As shown in Figure 

4.5, the intensity of drought events, approximated by the number of moderate and severe 

droughts (defined by SPI < -1.00), increases gradually in many areas. 

                                                                 
14 More detail on the SPI across study locations and over time is provided in Appendix 4C. 
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Figure 4.5 The trend of number of moderate and severe droughts  

at the study sites (1992-2012) 

Source: Author’s calculation based on data from the Vietnam National Centre for Hydro-Meteorological 

Forecasting 

 

4.3.2 Agricultural production 

Despite the country’s rapid economic development, agriculture still plays a key role in 

the Vietnamese economy, accounting for 22% of the Gross Domestic Product and 54% of the 

labour force (GSO, 2014). Since 1986, following the Renovation Policy, Vietnam has shifted 

from a centrally planned economy where the State took control of agricultural production to a 

socialist-orientated market economy where the individual farm is a key decision-making unit 

(Marsh et al., 2006).15 This structural transition has allowed farmers flexibility to alter their 

production systems to follow market signals and better deal with changes in the production 

environment.   

                                                                 
15 The “Renovation Policy” or “Doi Moi” in Vietnam was introduced in 1986 with a broad range of policy measures 

to shift from a centrally planned economy to a market-oriented one. In the agricultural sector, the policy facilitated 

the growth of the private, household economy and agribusiness. 
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In the agricultural sector, crop production is still dominated by rice as a major cash crop, 

using 39.8% of the total agricultural land (GSO, 2014). Rice farmers are typically smallholders 

and their livelihoods depend heavily on agriculture as the predominant source of income. 

However, agricultural production, especially rice cultivation, is inherently vulnerable to climate 

change due to very large acreage under rice across all regions in Vietnam, so that diversification 

is difficult. In addition, the technique of growing rice as a typical broad acre crop renders it 

directly exposed to climatic conditions. 

4.3.3 Adapting to changing environmental conditions 

Changing climatic conditions in Vietnam are likely to be especially damaging for rice 

cultivation, given its exposure to shifts in temperature and precipitation. Vietnamese farmers are 

applying a broad range of strategies that allow them to adapt to changing production conditions. 

The most common adaptation practices include diversification of crops and income sources, 

adjustment of various farm management practices, and adoption of soil and water conservation 

techniques when it comes to climate change.  

In reality, as climatic change occurs gradually, farm adjustments to that phenomenon are 

largely unnoticed, the so-called autonomous adaptation (Feenstra et al., 1998; Smit and Skinner, 

2002; Smit and Wandel, 2006). However, as discussed earlier, the climatic conditions in our 

study areas have changed considerably in terms of increased average temperature and an increase 

in the rate and magnitude of droughts. As a result, it is expected that some specific adaptation 

practices would have been adopted to mitigate the adverse impact of climate risks (Feenstra et 

al., 1998). In the study areas, farmers have been observed using rock bunds, soil bunds, terraces 

and grass lines as conservation measures.16 Visual descriptions of these methods are detailed in 

                                                                 
16 These soil and water conservation techniques were also introduced by FAO in published technical manuals. 

These manuals briefly present the theoretical background and benefits of these techniques and also discuss their 

application at the farm level. 
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Appendix 4A. Applying these soil and water conservation practices is a key adaptation method 

to maintain soil moisture, alleviate the growing water-shortages and worsening soil conditions, 

and mitigate the negative impacts of higher temperatures and lower rainfall (Kurukulasuriya and 

Rosenthal, 2003). Rock and soil bunds are typically built to control surface runoff and harvest 

rainwater to mitigate the impact of soil erosion and increase soil moisture. Other techniques, 

such as building grass lines and terraces, have also been widely applied in these areas. These 

adaptation practices often require substantial inputs such as building materials and labour.  

 

4.4 Conceptual framework 

To examine the dynamic patterns of Vietnamese farmers’ decision-making process, a 

dynamic discrete choice model of adaptation practices, controlling for unobserved heterogeneity 

and state dependence was constructed. Unobserved heterogeneity refers to those unobservable 

factors such as farmers’ management ability, household wealth and attitude towards adoption of 

conservation techniques. These factors may influence the decision-making process of an 

individual farmer. Panel data analysis allows us to control adequately for time-invariant 

unobserved heterogeneity. In this study, a farmer’s decision to use soil and water conservation 

techniques as adaptation practices is modelled as a binary choice: adoption (y = 1) or non-

adoption (y = 0).   

Discrete choice models are based on the random utility framework (Greene, 2003; 

McFadden, 1980). This framework has been used frequently in technology adoption in general, 

and in studies on adoption of conservation practices as a part of the response to more profound 

impacts of climate-related changes in particular (Lambert et al., 2007; Sietz and Van Dijk, 2015).  
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The model is based on the notion that the ith farmer faces a pair of choices: adoption (j) 

or non-adoption (k); and the utility associated with the two choices follows the underlying 

random utility function: 

                                               (4.1) 

       for i = 1, …, N,              (4.2) 

where  is a deterministic term, which is dependent on the explanatory variables Xi, and 

an unknown vector of parameters β to be estimated, and εi is a random error term. The random 

utility model hypothesises that a farmer will decide to adopt an adaptation practice if the use of 

that measure provides greater utility than not adopting it. If the farmer is observed to make choice 

j, then it can be assumed that the farmer perceives that choice as having higher utility than the 

alternative choice. An indicator function can be used with a value of 1 if Uij > Uik and value of 

0 if Uij ≤ Uik (Greene, 2003), denoted by: 
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               (4.3) 

Then, the probability that j will be chosen satisfies:  

               

                 =  

        =     (4.4) 

where the term X’β collects all the observable information about the difference between the 

two utility functions, and ε denotes the difference between the two random errors (i.e. the 

unobserved factors).  
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In the probit model, εi is assumed to have a standard normal distribution and requires 

being independently and normally distributed. Estimation of the binary probit model is usually 

based on the method of maximum likelihood where each observation is treated as a single draw 

(Y1 = y1, Y2 = y2…, Yn = yn) from a Bernoulli distribution (Greene, 2003). Then, the likelihood 

function to be used in the estimation of the parameters is expressed as:   

 = ∏ [1 − 𝐹(𝑋′𝑖𝑦𝑖=0 𝛽)] ∏ 𝐹(𝑋′𝑖𝑦𝑖=1 𝛽)       (4.5) 

 

4.5 Empirical model and data 

4.5.1 Empirical model 

Following the approach of Wooldridge (2005), and Skrondal and Rabe-Hesketh (2014), 

we specify a dynamic random-effects probit model, as follows: 

   (4.6) 

t = 1,2,.....6;   i = 1,2,....N,  

where yit −1: lagged choice variable yit; ρ is the state dependence parameter; xit: a vector of 

explanatory variables including climatic variables such as SPI45, drought, and temperature; zit: 

a vector of control variables such as farm-level specific characteristics and socio-economic 

drivers; and µi: an unobserved individual-specific effect, which captures the unobserved 

heterogeneity. To take into account the unobserved effects, the composite error term was 

decomposed into the individual-specific time-invariant µi term, and εit ~ N(0, σu
2). 

Equation (4.6) can be alternatively written as a latent response formulation:  

  (4.7) 

where, εit is assumed to be independently and identically distributed over time and the observed 

 1 1 2 2 ,   ,    |n nPr Y y Y y Y y X   

1 ,  11 , ,  )  (  |   it it it it it it it it i itPr y y x z x z y µ          

 1*        it it it it i ity x z y µ       
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binary choice of adoption or not of climate adaptation techniques yit is:  

   (4.8) 

It is often noted that the initial choice to adopt agricultural practices may influence 

farmer’s subsequent decision, which is referred to as state dependence.  

A standard approach to handling longitudinal dependence is to use a model where binary 

responses yit are regressed on lagged responses yit-1 (Skrondal and Rabe-Hesketh, 2014). 

However, in the presence of unobserved heterogeneity, estimation is inconsistent due to an issue 

known as the ‘initial condition problem’ (Heckman, 1981). The root of that problem lies in the 

potential correlation between the initial dependent variable yi0 (the first observation for the 

dependent variable) and the unobserved effects µi in the estimated model. If the initial condition 

problem is ignored, uncorrected heterogeneity not only leads to an overstatement of the state 

dependence effect, but could also lead to an understatement of the impact of other factors 

influencing the decision-making process (Heckman, 1981; Moser and Barrett, 2006; Nolan, 

2010). 

It could be assumed that unobserved heterogeneity µi is independent of the explanatory 

variables; but that assumption would be perhaps too strong since some correlation may exist 

between observable and unobservable characteristics of a household. For instance, a farmer’s 

unobservable ability in farm management or risk preference may correlate with a farmer’s 

observable age and education level. Mundlak (1978) proposes an approach to relax this 

assumption by allowing for correlated random effects, and this method has been further 

developed by Wooldridge (2005) and Skrondal and Rabe-Hesketh (2014). Wooldridge’s 

estimator shows a computational advantage in comparison with other estimators developed by 

Heckman (1981) and Orme (2001). However, Skrondal and Rabe-Hesketh (2014) suggest that 

the initial values of all explanatory variables should be added to the model to avoid estimation 
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bias, especially for a panel with a limited number of survey rounds, as in our case. Further, any 

misspecification in a dynamic random-effects probit model will result in biased parameters that 

potentially overstate or understate the effect of regressors (Heckman, 1981; Panos, 2008). 

Therefore, to allow for correlated effects, state dependence and initial conditions, the conditional 

approach of Skrondal and Rabe-Hesketh (2014) was applied to parameterise the 

individual/household effects µi by way of the following auxiliary regression:   

 (4.9) 

where yi0 is the initial condition (i.e. the first observation for the dependent variable); x̄i, 𝑧̅i: vector 

of within-individual/household means for the time-varying independent variables xit and zit; xi0, 

zi0: the initial conditions of xit and zit. 

Thus, following Skrondal and Rabe-Hesketh (2014), Equation 4.7 can be specified as a 

latent variable model to be estimated as: 

 (4.10) 

This is a dynamic random-effects model, controlling for unobserved heterogeneity, state 

dependence and correlated initial conditions. The estimated results of the three specifications of 

the empirical model were presented: a pooled model, Wooldridge’s estimator (2005) and 

Skrondal and Rabe-Hesketh (2014) estimator. The primary distinction between the Wooldridge 

(2005) and Skrondal and Rabe-Hesketh (2014) estimators is that Skrondal and Rabe-Hesketh 

add initial conditions of all explanatory variables to the model and use a contiguous sequence of 

data on the dependent variable, whereas Wooldridge does not. Starting with the pooled model, 

and moving to the Wooldridge (2005) and Skrondal and Rabe-Hesketh (2014) estimators, each 

of those estimators has a more complex specification than the previous. This raises caution about 

the predictive power and the estimation consistency across models and estimators. Therefore, 

while Skrondal and Rabe-Hesketh’s (2014) approach was used in estimation, a pooled model 
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 1 0 0  0 0  0 0*                      iiit it it it y i x i z i i itx z
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specification (Equation 4.11) and the Wooldridge (2005) (Equation 4.12) were also reported 

specification for comparison purposes. 

  (4.11) 

 1 0 0                    iiit it it it y x zi i ity x z zy uxy                  (4.12) 

 

4.5.2 Data  

Household data 

The study uses the same dataset that was used in Chapter 2, which is a rich longitudinal 

dataset from a nationally representative sample of households from six provinces (Ha Tay, Lao 

Cai, Phu Tho, Nghe An, Khanh Hoa and Long An) across various agro-ecological regions of 

Vietnam. That panel dataset was created by combining data from two separate national 

representative surveys, the Vietnam Living Standard Survey (VLSS 1992-1993, 1997-1998) and 

the Vietnam Access to Resources Household Survey (VARHS 2006, 2008, 2010, 2012). The 

procedure to create the panel dataset used in this study can be found in Section 2.4.1 in Chapter 

2.  

Weather and climate data 

As a common practice in studies of adaptation to climate change, Baez et al. (2013) 

suggest that it is necessary to recognise two distinct phenomena associated with changing 

climatic conditions: ‘shocks’ and ‘shifts’. Shocks are referred to as weather variability and 

intensity and severity of extreme events such as floods, droughts and typhoons while shifts in 

climate are represented by gradual changes in rainfall and temperature patterns over long time 

periods (Baez et al., 2013). In this study, the impacts of both ‘shocks’ and ‘shifts’ on farmers’ 

adaptation behaviour were  taken into account with a particular focus on drought conditions since 

drought directly affects the ability to maintain soil moisture. In this study, climatic shocks refer 

 1        it it it it ity x z y      
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to the number of moderate and severe droughts that each household experienced in the last two 

years prior to the time of the survey, and the magnitude of the SPI. Changes in temperature were 

represented by Growing Degree-Days (GDDs) during the rice growing season of the 

corresponding survey year.  

The dataset of daily rainfall and temperature over 38 years (1975-2012) at 22 weather 

stations from the Vietnam National Centre for Hydro-Meteorological Forecasting was used to 

construct climate variables. These variables were constructed based on data from the weather 

station nearest to the surveyed household. Given the wide spatial distribution of surveyed farm 

households across different agro-ecological zones, and the relatively long time series of observed 

weather data over the study period, it is possible to capture both cross-sectional and temporal 

variations of climate-related variables in this study (Figures 4.1, 4.2, 4.4 and 4.5). The 

conventional approach to include climate variables is to simply take a monthly or annual average 

of temperature or rainfall over the study period. However, agronomic studies have shown that 

the growth and development of plants are firmly related to the accumulation of heat and 

precipitation within certain thresholds during their growing season (Deschenes and Greenstone, 

2007). In addition, the development of plants does not occur if the temperature at a given time is 

below a minimum threshold value (i.e. 80C for rice). Deschenes and Greenstone (2007) also 

argue that this method is better for evaluating the impact of climatic change and variability in 

the agricultural sector. Consequently, this approach was applied to generate climatic variables 

regarding the absorbent threshold that is suitable for plants to grow, which is 80C – 300C for rice 

(Steduto et al., 2009). 

For climatic variables, GDDs represent the cumulative heat to which the rice crop was 

exposed within the upper and lower absorbent threshold during the entire growing season 

(McMaster and Wilhelm, 1997). Using daily data on temperature for the relevant survey year 

from the weather station closest to the surveyed farm, daily GDDs for rice were calculated during 
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the growing season, which varies from 1 February to 30 December across various regions in 

Vietnam.17 The cumulative GDDs are the sum of all daily GDDs that have occurred from the 

start to the end date of the rice growing season.  

For climatic shock variables, Thomas et al. (2010) recommend that an effective way to 

determine whether a household has been affected by extreme weather is to ask them directly 

because respondents know exactly what natural disasters have happened in their area. However, 

a drawback of the approach is that households are unable to differentiate precisely the level of 

intensity and severity of each extreme event. To overcome that limitation, the Standardised 

Precipitation Index (SPI) developed by McKee et al. (1993) which can capture the variability, 

magnitude and duration of droughts was applied.18 The index was designed to quantify the 

precipitation deficit for multiple timescales using long-run observed precipitation data (Svoboda 

et al., 2012). Positive values of SPI indicate greater than median rainfall, and negative values 

indicate less than median precipitation, or deficit, during the relevant period. Based on observed 

data of the weather stations located near farming households, a household-specific variable 

labelled SPI45 was created to capture the value of SPI in April and May of the previous year. 

This was justified based on the growth stages of rice, where reproductive and ripening stages 

take place during these months, and the rice crop is most sensitive to weather conditions, 

especially droughts during that period (Sridevi and Chellamuthu, 2015). A variable labelled 

‘drought’ was also created to capture the intensity of the drought event using the number of 

moderate and severe droughts (defined by SPI < -1.00) experienced by households in the last 

two years of the corresponding survey round. 

Furthermore, climate normals were defined as 30-year averages of temperature. In this 

study, climate normals of temperature are calculated using the long-run average of GDDs 

                                                                 
17 The formula used to calculate GDDs is provided in Appendix 4B. 
18 The SPI was calculated using the SPI software by the National Drought Mitigation Centre. More information is 

provided in Appendix 4B. 
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(AGDDs) between 1975 and a year before the relevant survey year. Rainfall-related variables 

were excluded from regression analysis due to the possibility of potential simultaneity between 

these covariates and the SPI, which is calculated using rainfall data. 

 

4.6 Results and discussion 

4.6.1 Results of descriptive analysis 

Farmers’ decision to apply soil and water conservation techniques (i.e. rock bunds, soil 

bunds, grass lines and terraces) as a climate change adaptation measure is modelled as a 

dichotomous outcome. In this study, farmers were classified as adopters if they applied any of 

the conservation techniques mentioned earlier. The dynamics of the aggregate adoption decision 

for the period 1992 to 2012 are presented in Figure 4.6.  
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Figure 4.6 Percentage of households that adopted some of the soil and water conservation 

techniques (1992-2012) 
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As the main objective of this study is to investigate factors behind farmers’ choice to 

adopt agricultural practices that aid adaptation to climate change, the potential effect of climatic 

change on production decisions was addressed by incorporating various variables representing 

weather and climate risks. To do so, weather shocks, climate variability and climatic change 

were simultaneously differentiated. In this context, weather shock is defined as SPI < -1.00 based 

on data from the weather station closest to the surveyed farm, which refers to the number of 

moderate and severe droughts that each household experienced in the last two years. Climate 

variability is captured by the value of SPI in April and May of the previous year, during the 

reproductive and ripening stages of rice. These household-specific climatic variables are 

calculated using data from weather stations located near the farming households. The application 

of conservation techniques directly links to drought conditions in the way of conserving 

moisture, facilitating nitrogen-fixation and increasing the soil-carbon content, leading to 

mitigation of the adverse impacts of climatic change (Khonje et al., 2015; Manda et al., 2016). 

Consequently, it is expected that if farmers observe increased climatic variability and climatic 

change over the years, they would be more likely to adopt soil and water conservation techniques.  

In addition, other factors that may influence the decision-making process of individual 

farmers were controlled for. Several covariates were selected for household and farm 

characteristics (e.g. household head experience, farm size, access to information) and 

information on input and output markets. The selection is based on a literature review of previous 

technology adoption in agriculture (Doss, 2006; Sietz and Van Dijk, 2015).  

Household and farm characteristics were first controlled for by using variables that best 

describe the features of the farms. The experience of the household head is believed to be 

positively associated with technology adoption. Evidence from various sources indicates that 

there is a positive relationship between the number of years of experience in agriculture and the 

adoption of improved agricultural technologies. Moreover, Deressa et al. (2009) and Piya et al. 
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(2013) confirm that access to weather information and information about new techniques could 

facilitate the adaptation process to climatic variations and change. Information such as new 

agricultural practices, short-term forecasts and seasonal forecasts may be available to farmers 

through radio, television and extension agents. It is regularly hypothesised that access to credit 

eases the cash constraints of smallholders and allows them to invest more in farm production and 

management (Knowler and Bradshaw, 2007). In addition to household characteristics, studies on 

adoption of conservation measures also pay attention to the biophysical features of the farm. As 

farm size is found to influence adaptation positively or negatively (Maddison, 2007; Piya et al., 

2013), the overall impact of farm size on adoption is inconclusive (Knowler and Bradshaw, 

2007).   

We also control for commune-level input and output market information through labour 

and farm-gate average price variables. A set of year-specific dummy variables is also included 

in the model to capture inter-temporal changes, spatial heterogeneity and policy variability, 

which are unobservable in the data.  

Table 4.1 presents the descriptive statistics for the variables used in the study. The dataset 

covers a broad range of variables that may affect the decision-making process of farmers. 

Explanatory variables include all factors representing extreme events, climate variability and 

change. The descriptive analysis shows a slight difference in the means of all variables of interest 

between adopters and non-adopters, and it is even more noticeable when considering the 

descriptive statistics across years provided in Appendix 4D. Table 4.1 shows that adopters have 

greater farm size, produce more output, and have longer experience in farming; they also more 

often access weather information, and on average receive a higher farm-gate price compared to 

non-adopters.  
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Table 4.1 Description of outcome, explanatory and control variables 

Variable Description 
Level of 

observation 

Full sample Adopters Non-adopters 

Mean Std. 

Dev. 

Mean Std. 

Dev. 

Mean Std. 

Dev. 

Outcome variable 

Soil and water 

conservation 

Household applied soil and water 

conservation techniques (yes=1) 

Households 

and years 

0.72 0.45 1.0  0.0  

Explanatory variables  

Extreme events, climate variability and change 

SPI45 (t - 1) 

 

Value of SPI in April and May of 

the previous year 

Households 

and years 

-0.41 0.77 -0.57 0.76 -0.38 0.67 

Drought Number of moderate and severe 

drought in the last 2 years 

Households 

and years 

1.00 1.76 1.01 3.2 0.88 2.38 

GDDs Growing degree-days: 

Cumulative warmth during the 

growing season of rice (0C) 

Households 

and years 

4415.7 425.7 4364.7 412.8 4448.3 442.6 

AGDDs Average of GDDs between 1975 

and a year before relevant census 

year (0C) 

Households 

and years 

4056.5 500.3 4018.3 464.1 4076.3 551.6 

Control variables  

Soil and water 

conservation (t-1) 

Lag outcome variable Households 

and years 

0.43 0.49 1.0  0.0 
 

   Household and farm characteristics 
 

Household size Number of family members Households 

and years 

4.67 0.49 4.72 1.71 4.56 1.74 

Credit Access to credit Households 

and years 

0.59 0.49 0.61 0.48 0.58 0.49 

Experience Experience of household head in 

rice cultivation (years) 

Households 

and years 

13.27 5.83 13.62 5.79 12.06 6.6 

Farm size Farmland operated by household 

(m2) 

Households 

and years 

4053.3 8400.6 4255.9 9421.3 4089.9 7210.7 

Information Access to information on weather 

and climate change (yes=1) 

Households 

and years 

0.44 0.5 0.52 0.5 0.44 0.5 

Input and output information 

Labour wages(t - 1) Average regional labour wages in 

previous season (1000VND/day)* 

Regions 

and years 

62.92 49.79 62.53 55.04 42.66 41.93 

Farm-gate price(t - 1) Average regional retail price of 

rice in previous season 

(1000VND/kg)* 

Regions 

and years 

3.29 3.52 3.32 3.94 2.15 1.49 

Note: *VND, Vietnamese Dong (approximately 16.015 VND/$U.S. averaged over 1992 to 2012) 
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In dynamic modelling, it is crucial to properly handle missing data of the response 

variable in any particular round of the survey during the study period. Since descriptive statistics 

ignore missing observations of the decision-making outcome, the nature of the data was 

described by investigating the patterns of the missing data on the dependent variable of interest, 

which is farmers’ decisions to adopt conservation technologies.  

Table 4.2 Patterns of missing data for adoption decision of conservation practices in 

household data 

Frequency % Cumulative Pattern 

108 34.18 34.18 111111 

86 27.22 61.39 111..1 

52 16.46 77.85 111.11 

23 7.28 85.13 111... 

23 7.28 92.41 1111.1 

7 2.22 94.62 1111.. 

6 1.90 96.52 11111. 

4 1.27 97.78 111.1. 

2 0.63 98.42 1..111 

5 1.58 100 (others) 

316  100 xxxxxx 

  Notes: 1 denotes non-missing and dot (.) denotes missing 

In Table 4.2, ‘1’ denotes non-missing and a dot (.) denotes the missing value of the 

response variable in any of the six waves of the surveys. For example, a pattern ‘111111’ 

indicates that 34.18% of the 316 observations in the ‘linked’ dataset have full responses on the 

adoption decision for all six waves of the surveys (see Section 2.4.1 in Chapter 2 for details to 

create the ‘linked’ dataset). Similarly, ‘111..1’ indicates that there are missing data on the 
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response variable in the fourth and fifth waves of the surveys. As suggested by Skrondal and 

Rabe-Hesketh (2014), in the dynamic modelling of farmers’ choice with concerns about initial 

conditions, it is critical to focus on observations that have at least two consecutive non-missing 

values across surveyed periods. These observations will contribute to the analysis of the dynamic 

random-effects probit model if the status of the previous adoption decision is required. The 

missing patterns also help decide the values of the initial conditions imposed on outcome 

variables. Skrondal and Rabe-Hesketh (2014) suggest that observations that are preceded and 

succeeded by missing data should not be used.  

 

4.6.2 Estimation of the dynamic adoption model 

To investigate factors behind smallholders’ decision-making process for adoption of soil 

and water conservation technologies, and specifically in the effects of climate related factors, a 

dynamic model of discrete choice of adopting conservation practices, controlling for unobserved 

heterogeneity and state dependence was estimated.19 Table 4.3 below presents the estimation 

results from a dynamic random-effects probit model for the probability of adoption using the 

Skrondal and Rabe-Hesketh (2014) estimator. The independent variables contain all variables 

listed in Table 4.1 plus year fixed effects. To address the initial condition problem as suggested 

by Wooldridge (2005) and Skrondal and Rabe-Hesketh (2014), means of time-varying variables 

and variables representing the initial conditions over time were included. For comparison 

purpose, the pooled probit estimates are also reported in the same table which allows us to assess 

the explanatory power of the dynamic random-effects model.  

                                                                 
19 All models were estimated by Stata 14.0 with xtprobit, meprobit, and margins functions. The number of 

integration points for meprobit function is sensitive for achieving convergence. The more integration points, the 

more accurate the approximation to the log likelihood is. After several trials, we ended up with 133 integration 

points, which produced a robust estimation. 

We also re-estimated these models using GLLAMM, a user-written program developed by Rabe-Hesketh, which 

provided identical results.    
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Table 4.3 The decision to adopt soil and water conservation techniques: a dynamic random-

effects probit model 

 Pooled probit model Dynamic probit model 

Explanatory variables    

SPI45 (t - 1)  0.11632 0.11303* 

 (0.0682) (0.0495) 

Drought 0.03042 .05143* 

 (0.0237) (0.0211) 

GDDs -0.00046* -0.00038 

 (0.0002) (0.0003) 

AGDDs 0.00005 0.00440*** 

 (0.0001) (0.0010) 

Control variables   

Conservation techniques (t - 1) 0.16887 0.14199** 

 (0.0895) (0.0579) 

Household size  0.00237 -0.00602 

 (0.0263) (0.0195) 

Credit  -0.05573 -0.12623 

 (0.0904) (0.1010) 

Information  0.27660** 0.38017*** 

 (0.1018) (0.1067) 

Experience  0.02047** 0.02212** 

 (0.0074) (0.0111) 

Farm size  0.00000 0.00002* 

 (0.0000) (0.0000) 

Labour wages (t - 1) 0.00096 -0.00146 

 (0.0024) (0.0052) 

Farm-gate price (t - 1) 0.06862 0.14014** 

 (0.0430) (0.0437) 

Constant 1.70047* 2.91725*** 

 (0.6639) (0.8219) 

Year dummy Yes Yes 

Contiguous sequence Yes Yes 

Initial condition No Yes 

Within-household means No Yes 

Log likelihood -594.529 -616.965 

       Notes:   1. Standard errors are presented in parentheses  2. *, **, *** Significant at 10%, 5%, 1% level 
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For the estimated parameters, the signs of the coefficients are particularly informative. A 

positive (negative) sign means that any increase in the independent variable is associated with 

an increase (decline) in the probability of adoption of soil and water conservation technologies.  

In the presence of unobserved heterogeneity, estimation is inconsistent due to an issue 

known as the “initial condition problem” owning to the simultaneous presence of both the lagged 

dependent variable and unobserved effects (Heckman, 1981). This can violate the strict 

exogeneity assumption, which can result in an overstatement of the state dependence effect and 

at the same time an understatement of the impact of other factors influencing the decision-making 

process (Heckman, 1981; Moser and Barrett, 2006; Nolan, 2010). In this study, it is found that 

the estimated results are consistent with many previous empirical studies because comparing the 

two specified models, the pooled probit estimates overestimate the impact of the previous 

adoption decision and underestimate the effects of the other independent variables (Arulampalam 

and Stewart, 2009; Heckman, 1981; Moser and Barrett, 2006; Stewart, 2007). The result is 

reinforced when marginal effects of the models were analysed in the next step. The dynamic 

model allowing unobserved effects also presents a substantial advantage regarding the 

explanatory power with the greater statistical significance of independent covariates.   

There is statistically significant evidence of the effect of climatic variability and change 

on farmers’ behaviour. More specifically, the decision to adopt adaptation measures is strongly 

affected by weather shocks (e.g. severity and intensity of drought), and long-run changes in 

temperature during the rice growing season; and their effects are found to be statistically 

significant. Farms experiencing more extreme droughts in the last two years and a lower SPI 

show a greater propensity to adopt these conservation technologies. In Vietnam, natural disasters 

such as droughts, floods and tropical cyclones often cause considerable damage to the 

agricultural production system, including soil and water conservation structures (Chau et al., 
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2013; Phong et al., 2010). Thomas et al. (2010) and Yu et al. (2013), using a similar dataset as 

ours, also point out that droughts lead to a decrease in farm productivity. As a consequence, 

experiencing these climate-related shocks encourages farmers to invest in conservation practices 

to protect their farmland and increase farm productivity. Hence, our results show that frequency 

of droughts and a low SPI likely encourage farmers to adopt soil and water conservation practices 

due to their benefits of protecting water sources, soil moisture and general soil improvement 

given that climate change has already been observed in these areas. The result is consistent with 

our expectations, and with results from other empirical studies (Adger, 1999; Ding et al., 2009; 

Zilberman et al., 2011).  

In addition, since the study takes into account both the temporal trend in climatic change, 

i.e. the increasing average GDDs over 30 years, and the cross-sectional variation of household 

exposure to the changing climate at different study sites, we find that households with greater 

exposure to long-term warming and increasing number of extreme events tend to be associated 

with higher likelihood of adopting soil and water conservation techniques. Because there is a 

noticeable increase in annual temperature and greater variations in rainfall over time in many 

parts of Vietnam, applying these measures alleviates water shortages and soil degradation, and 

mitigates the adverse effects of the changing climate.    

For the control variables, we can say that there is state dependence in farmers’ decision 

to adopt soil and water conservation techniques over time. Farmers who applied conservation 

practices at time t-1 show considerable tendency to reapply those practices at time t. Households’ 

initial choice positively influences their current adoption decision. 

It is also evident that farm characteristics, such as farm size, household head’s experience 

and access to meteorological information are also associated with households that have decided 

to apply soil and water conservation. Access to weather information such as rainfall and 

temperature forecasts has a positive and significant effect on the likelihood of implementing 
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these conservation techniques, which can be explained by the enhancements of farmers’ capacity 

and preparedness to cope with changing production conditions through ongoing updates of 

weather information (Sietz and Van Dijk, 2015; Tambo and Abdoulaye, 2012). As expected, the 

probability of adoption increases significantly with farmers’ experience in agricultural 

production, which reflects the important role of the household head as a decision-maker in the 

application of these techniques. Our findings are in line with many previous studies (Bryan et 

al., 2009; Kassie et al., 2013; Marenya and Barrett, 2007). 

However, household size and access to credit have no statistically significant effect on 

current adoption of soil and water conservation technologies. Due to the importance of 

institutional support in promoting adaptation strategies, especially for the case of small-scale 

producers with budget constraints, access to credit should facilitate the decision to apply 

conservation techniques. Moreover, although family members manually implement most of 

these practices on their farms, there is no evidence of any relationship between larger household 

size and the application of various adaptation strategies.  

In addition, input and output market information through regional labour and farm-gate 

average prices were controlled for. The estimated results indicate that farm-gate price of rice 

contributes to the decision to adopt conservation technologies, which reflects farmers’ 

expectation of higher output price when they observe an increase in the farm-gate price of rice 

in the previous year. In this case, they are willing to respond to that increase by investing more 

in their farmland to boost the output. The important role of input and output market prices in 

farmers’ decision-making process of technology adoption has been well-recognised in 

the literature (Adesina and Zinnah, 1993; Below et al., 2012; Feder et al., 1985; Shiferaw et al., 

2013). By accounting for the effects of farm and household characteristics, access to credit and 

meteorological information, and information on input and output prices, it is possible to isolate 

the effects of climate change and also find statistical evidence of those effects on farmers’ 
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behaviour in using adaptation practices to cope with the changing climatic conditions.  

In general, the dynamic specification, controlling for state dependence, unobserved 

heterogeneity and initial conditions, results in significant improvements in the explanatory power 

of the dynamic model in comparison to the pooled model. It is evident that the dynamic model 

provides a better understanding of farmers’ decision-making process and its drivers. It helps 

inform practitioners and policy-makers in their policy-making activities to facilitate climate-

resilient strategies to improve smallholders’ adaptive capacity under ongoing climatic 

uncertainty. 

 

4.6.3 Robustness checks 

To assess the robustness of the dynamic model and the Skrondal and Rabe-Hesketh 

estimator, the following was performed: 

(1) Separate and estimate two different sets of data: one set with all available data on the 

dependent variable, and another set with only the data where there is a contiguous sequence on 

the dependent variable. The latter includes observations with at least two consecutive non-

missing responses on adoption decision for all six waves of survey rounds. These observations 

will contribute to our dynamic probit model because the status of the previous adoption decision 

is required. Skrondal and Rabe-Hesketh (2014) suggest using only observations with at least two 

consecutive non-missing values of the dependent variable to achieve higher estimation 

consistency. 

(2) For each set defined in (1), re-estimate the pooled probit model and Skrondal and 

Rabe-Hesketh estimator; add and estimate a new estimator (Wooldridge’s estimator) for 

comparison purposes. 
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(3) Estimate and report average marginal effects (AME) making it comparable across all 

models. In the probit model, the sign of the coefficients expresses the direction of the effects of 

the independent variables on the predicted probability. However, the magnitudes of those 

coefficients are not directly comparable across models (Wooldridge, 2010). Wooldridge (2010) 

suggests that estimating AME is sufficient for overcoming this limitation and it may also increase 

the estimation efficiency across models. The AME measures the expected change in the predicted 

probability of the dependent variable with respect to a unit change in the independent covariates. 

The estimation results of the AME are reported in Table 4.4.  

Moving from the pooled probit model to the Wooldridge (2005) and to the Skrondal and 

Rabe-Hesketh (2014) estimators, consistent results were confirmed compared to the estimated 

coefficients reported in Table 4.3. More specifically, the dynamic specifications (models 2, 3, 5 

and 6 in Table 4.4) considerably increase the explanatory power of the models. Controlling for 

unobserved heterogeneity and initial conditions in the dynamic models reduces the magnitude of 

the effect of state dependence and generally increases the magnitude of the impacts of 

independent variables on the probability of adoption. Comparing the two sampling approaches 

in Table 4.4 (models 1, 2 and 3 to models 4, 5 and 6), it is also obvious that the approach 

suggested by Skrondal and Rabe-Hesketh (2014) of only using the dependent variable with a 

contiguous sequence has some advantages in terms of explanatory power and magnitude of the 

marginal effects. 
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Table 4.4 Average marginal effects 

 All available data of y   
Only y with contiguous 

sequence 

Variables 

Pooled 

probit 

(1) 

Wooldrid

ge 

estimator 

(2) 

Skrondal 

& Rabe-

Hesketh 

estimator 

(3) 

Pooled probit 

(4) 

Wooldri

dge 

estimator 

(5) 

Skrondal 

& Rabe-

Hesketh 

estimator 

(6) 

Explanatory variables    

SPI45(t - 1) .03990 .04220** .04157** .03712 .03425* .03493** 

 (.0209) (.0139) (.0147) (.0221) (.0165) (.0151) 

Drought .00978 .01648** .01528* .00970 .01578* .01399** 

 (.0072) (.0056) (.0062) (.0075) (.0062) (.0065) 

GDDs -.00014* -.00010 -.00009 -.00014* -.00013 -.00011 

 (.00005) (.0001) (.0001) (.00005) (.0001) (.0001) 

AGDDs .00001 .00106** .00104** .00001 .00136*** .00135*** 

 (.00003) (.0003) (.0003) (.00004) (.0003) (.0003) 

Control variables       

Conservation 

techniques (t - 1) 

.05033 

(.0274) 

.04936*** 

(.0114) 

.04085*** 

(.0107) 

.05318 

(.0284) 

.05006** 

(.0143) 

.04752*** 

(.0186) 

Household size -.00139 -.00763 -.00961 .00075 -.00016 -.00186 

 (.0080) (.0069) (.0087) (.0084) (.0068) (.0060) 

Credit -.01678 -.02670 -.02818 -.01779 -.03367 -.03901 

 (.0282) (.0384) (.0398) (.0288) (.0298) (.0312) 

Experience .00638** .00795* .00792* .00653** .00710* .00683** 

 (.0022) (.0036) (.0037) (.0023) (.0037) (.0035) 

Farm size 6.1e-07 4.2e-06 3.7e-06* 1.0e-06 5.2e-06 5.0e-06** 

 (1.3e-6) (2.9e-6) (1.9e-6) (1.3e-6) (3.0e-6) (2.1e-6) 

Information .07050* .08550** .08854** .08829** .11342*** .11750*** 

 (.0303) (.0264) (.0290) (.0322) (.0309) (.0329) 

Labour wages (t - 1) .00047 -.00034 -.00033 .00030 -.00059 -.00045 

 (.0005) (.0007) (.0006) (.0007) (.0016) (.0015) 

Farm-gate price (t - 1) .02140 .03320* .03519* .02190 .04013*** .04331*** 

 (.0127) (.0118) (.0169) (.0136) (.0078) (.0136) 

Notes:  1. Standard errors are presented in parentheses  2. *, **, *** Significant at 10%, 5%, 1% level 
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In the probit model, various kinds of misspecification such as heteroskedastic errors and 

omitted variables would lead to biased or inconsistent estimators (Yatchew and Griliches, 1985). 

In this study, it is suspected that correlations among variables and heteroskedastic disturbances 

may be present due to the significant variations in farm and farmer characteristics and also in 

their production capacities and farming strategies across different regions and over time. 

Therefore, several model diagnostics were conducted, including statistical tests for 

multicollinearity, heteroskedasticity and autocorrelation to avoid invalid conclusions.  

To detect multicollinearity, two well-known indicators were used: Tolerance (i.e. 

correlations between variables) and Variance Inflation Factor – VIF (i.e. the level of estimated 

coefficient is being inflated by multicollinearity).20 Our estimated results confirm a low level of 

multicollinearity in the models as the largest value of VIF is 5.33 (equivalent to a value of 

tolerance of 0.187) from variables of year fixed effects. After testing for heteroskedasticity, the 

results of the Breusch-Pagan test reject the underlying assumption of homoscedasticity in the 

estimation models.21 Thus, robust standard errors were applied when regression models are 

estimated.  

The potential inter-temporal correlation in the sample is also concerned. Therefore, a test 

for autocorrelation using Wooldridge’s serial correlation test (Drukker, 2003; Wooldridge, 2015) 

was applied.22 The test result does not reject the null hypothesis of no serial correlation at 1% 

significance level in our models. Consequently, it could be concluded that serially correlated 

error terms do not exist in our models.  

 

                                                                 
20 The indicators are calculated using Stata user-written program ‘collin’ from Philip B. Ender, UCLA Department 

of Education. 
21 We here apply Stata user-written program ‘regcheck’ from Mehmet Mehmetoglu, Norwegian University of 

Science and Technology.  
22 The Stata user-written program ‘xtserial’ of David M. Drukker, Stata Corporation, is used to test for 

autocorrelation in the data. 
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4.7 Concluding remarks and policy implications 

The study is motivated by the ongoing changes in climatic conditions that impose 

detrimental effects on the agricultural sector, and on small-scale farmers’ livelihood in many 

countries, including Vietnam. Our study assesses and compares factors associated with the 

decisions of rice farmers to adapt to climate change by implementing various soil and water 

conservation technologies.  

The study employs a rich longitudinal dataset from a nationally representative sample of 

households in the Vietnam Living Standard Survey (VLSS) and the Vietnam Access to 

Resources Household Survey (VARHS) from 1992 to 2012. This 20-year panel data allows us 

to take advantage of the longitudinal dataset for dynamically modelling farmers’ responses to 

climate variability and change. Since farmers’ decisions to adapt to climate change are inherently 

dynamic, a dynamic random-effects probit model, controlling for unobserved heterogeneity and 

state dependence was estimated.  

The results of the analysis reveal that there is statistically significant evidence of the 

effects of climate change on farmers’ decision-making process. The decision to implement soil 

and water conservation practices is strongly influenced by weather shocks, drought intensity and 

long-run changes in temperature during the rice growing season. Thus, it is evident that 

Vietnamese farmers are constantly adapting to environmental changes to mitigate adverse 

impacts and increase their resilience to ongoing changes in the climate.  

There is evidence of persistence in farmers’ choice to implement soil and water 

conservation techniques over time. In addition, access to information on farm-gate price of rice 

and the weather forecast is associated with households that have decided to apply conservation 

techniques. Consequently, it is necessary to highlight the important role of providing 

meteorological and market information, and extension services on farm production and 

management to promote adaptation to ongoing climatic changes. Since small-scale farmers in 
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Vietnam face numerous constraints, it is likely to require more public investment in 

dissemination of climate-related and market information to farmers, as well as climate-resilient 

practices. In addition, farmers’ experience and farm size also foster the application of these 

adaptation strategies in a changing production environment. 

The dynamic model provides a better understanding of farmers’ decision-making process 

and its drivers which is critical for practitioners and policy-makers to facilitate climate-resilient 

strategies to improve small-scale farmers’ adaptive capacity under climatic uncertainty. 

However, there are important avenues for further research on the potential impact of adoption of 

conservation practices on rural households’ welfare. Filling this gap could significantly increase 

our understanding of what factors drive farmers’ decision to adopt and how this contributes to 

improving their overall well-being.  
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Chapter 5 

 

Conclusion 

 

 

 Introduction  

The primary goal of this research was to assess factors associated with agricultural 

technology changes in Vietnam and to model the decisions of rice farmers to apply adaptation 

strategies in response to changing production conditions, including pronounced evidence of 

climatic variability and change. The study focused on rice-cultivating households because 

agricultural production in Vietnam is still dominated by rice as a major cash crop, using 39.8% 

of the total agricultural land (GSO, 2014). Also, agricultural production, particularly rice 

cultivation, has been experiencing significant technological change over time, and is also 

inherently vulnerable to climate-related risks associated with variations in the production 

environment. 

Three separate empirical studies were conducted. The first study examined the pattern 

and drivers behind agricultural technology changes by farming households. This study 

investigated agricultural technology change and its determinants at the farming household level 

using an extensive 20-year panel dataset of nationally representative surveys of Vietnam. 

Probabilistic record linkage methods were used to find the best-matched observations from the 

two original surveys (VARH and VLSS) in order to create a long panel dataset. Such a 20-year 

panel with six waves across different agro-ecological locations allowed us to examine 

agricultural technology changes at the farm level over a relatively long period. The two-stage 
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estimation strategy provided an efficient way to determine how and to what extent the changes 

in agricultural practices (i.e. new seed varieties, chemical fertilisers, pesticides, and machinery) 

have been affected by various covariates, allowing for potential correlation among different 

technologies used by rice farmers.  

The second study identified empirical evidence of climate change across Vietnam, as 

well as the potential effects on agricultural production. In this study, statistical methods with 

geostatistical techniques were combined to graphically represent the distribution of climate 

patterns, identifying variations and trends over time, and testing the statistical significance of 

those changes. Then, we compared the observed climate change with the spatial pattern of 

agricultural land use across Vietnam to identify the likely impacts of climate change on 

agricultural production. By using records of monthly precipitation and temperature for a 

relatively long-term period (1975 to 2014) over a high density of 112 meteorological stations 

across the country, robust visual and statistical evidence of climatic change throughout Vietnam 

were provided. 

The third study then examined how farmers have altered their farming practices over 

time in response to the observed changes in climatic conditions. Since farmers’ decisions to take 

up adaptation practices are inherently dynamic, a dynamic random-effects probit model, 

controlling for unobserved heterogeneity and state dependence was estimated. Using a relatively 

long panel dataset across different agro-ecological locations in Vietnam, it is possible to model 

farmers’ choices over a relatively long period. 

These studies gave a better understanding of the factors driving, and the constraints 

deterring, agricultural production over time in Vietnam to enhance smallholder farmers’ adaptive 

capacity to cope with changing production conditions.  
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 Key findings and policy implications 

5.2.1 Agricultural technology change  

The first study addressed two research questions: How has agricultural technology 

changed in the last 20 years in Vietnam? What factors have contributed to those 

technology changes over time? 

Key conclusions that could be drawn from this study are:  

(i) There have been significant changes in the pattern and determinants of 

agricultural practices applied by farmers across Vietnam, with notable contributions from 

improved seed varieties and the rapid spread of agricultural mechanisation.  

(ii) The price of hired agricultural labour as an input and the price of rice, as 

well as macro-level socio-economic conditions such as the growing urban population and 

the increasing agricultural wages, were found to be the main factors driving both the 

decision to use agricultural practices and the intensity of their use across various agro-

ecological regions of Vietnam. 

(iii)  However, the findings also showed a weak and uncertain spillover effect 

from some government policies aimed at improving access to credit and extension 

services on agricultural technology changes in the study area.  

Policy implications 

(i) It is regularly hypothesised that access to credit eases the cash constraints 

of smallholders and allows them to invest more in farm production and management. 

Lack of such access may prevent farmers from applying agricultural practices, in 

particular for practices that require high initial investment. In this study, the negative 

coefficients for access to credit are implausible although their effects on the level of 

technology use are not statistically significant. Thus, improving the efficiency of the 
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credit market and the accessibility of smallholders to that market could be promising for 

the goal of promoting new agricultural technologies to improve farmers’ wellbeing. 

(ii) In addition, when considering the application of a set of technology 

components within an individual household as interrelated decisions, the multiple-

equation models, such as Seemingly Unrelated Regression (SUR) are widely used in the 

literature (Smale et al., 1995). That is because the decisions to use several agricultural 

technologies are likely to be jointly made by an individual farming household. In that 

case, the SUR specification is relevant when it is able to capture the potential cross-

correlation among different decisions which have been made by rice producers. In this 

study, using the SUR approach, there is evidence of cross-correlation between the 

decisions to use agricultural technologies through the very high statistical significance 

level of their co-variances. This confirmed our hypothesis of the simultaneous 

relationships among the use of agricultural practices within an individual farm. Thus, 

follow-up policy interventions need to account for the interrelationships in an individual 

smallholder’s decision-making process to apply agricultural advances.  

5.2.2 Empirical evidence of climate change 

The second study addressed the following research questions: What is the 

empirical evidence of climate change across regions of Vietnam? What are the potential 

effects of those changes on the agricultural sector, particularly for rice production? 

Key findings 

(i) The analysis found evidence that climatic conditions are changing at 

different rates across regions of Vietnam. The study provided robust evidence, both 

geospatially and statistically, of the significant variations in the distribution patterns of 

rainfall and temperature. The visual analytics showed remarkable changes in the spatio-
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temporal distribution patterns of rainfall and temperature. The Mann-Kendall trend test 

confirmed the statistically significant long-term trends of over 40-year in most of the 

‘hotspot’ areas identified by geostatistical mapping. 

(ii) The significant changes in the long-term trends of climate variables were 

in areas with a very high proportion of agricultural land, particularly land used for rice 

production in the Red River and Mekong River deltas. This raises a growing concern over 

the adverse impacts of climatic risks particularly on agricultural production. 

Policy implications 

(i) Visual analytics used in mapping the distributions of precipitation and 

temperature can contribute significantly to analysing the precipitation and temperature 

series and identifying ‘hotspot’ areas across Vietnam. Rainfall anomalies demonstrated a 

dramatic heterogeneity in the distribution of precipitation change across regions. The 

spatio-temporal changes in temperature, however, showed a more uniform tendency 

characterised by a warming pattern across regions. Also, most areas with considerably 

pronounced precipitation and temperature pattern changes were also associated with 

statistically significant long-term trends verified by the Mann-Kendall test. These 

prominent patterns indicate that Vietnam is likely to face more variations in climatic 

conditions. The knowledge of spatio-temporal climate variability and change should be 

disseminated and transferred to stakeholders such as policy-makers, researchers, farmers 

and communities so the evidence can guide the decision-making process and 

implementation of effective adaptation responses to cope with a changing climate.  

(ii) Findings from this study point out that significant changes in the pattern 

of rainfall were observed in some provinces with substantial areas of rice. It is also clear 

that most agricultural areas across the country are experiencing a warming pattern in 
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climatic conditions, particularly the two largest rice production areas in the Red River 

and Mekong River deltas. More importantly, there is strong evidence of the influence of 

changes in temperature and rainfall patterns on crop yields, particularly yield reductions 

due to water scarcity in irrigated crops like rice (Nelson et al., 2009). Also, altered 

temperature and rainfall patterns are likely to be associated with increasing pests and 

plant diseases in rice-growing areas (Rosenzweig et al., 2001). Since adverse trends in 

rainfall and temperature patterns were identified in areas with a very high proportion of 

agricultural land, particularly for rice production, future policy interventions should also 

target those areas to mitigate the impacts of climate change and improve farmers’ 

resilience to the changing climate. 

5.2.3 Farmers’ adaptation to climate change  

The third study addressed the research questions: To what extent have farmers 

used soil and water conserving technologies as adaptation practices in response to 

changing climate conditions? What are the main drivers influencing farmers’ decision-

making process of applying certain adaptation practices to cope with climate change? 

Key findings 

(i) Farmers in the study areas have been constantly adapting to the changing 

climate by applying various agricultural adaptation practices. Weather shocks and long-

run changes in temperature during the rice growing season are significant determinants 

of a rice farmer’s choice to apply adaptation practices given that other factors that may 

affect farmers’ behaviour are controlled.  

(ii) In addition, there is evidence of persistence in farmers’ adaptation 

behaviour over time because their decision to adopt conservation practices in subsequent 

periods is strongly influenced by their past adoption decision. Also, the dynamic 
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specification, controlling for state dependence, unobserved heterogeneity and initial 

conditions, resulted in significant improvements in the explanatory power of the dynamic 

model in comparison to the pooled model. It is evident that the dynamic model provides 

a better understanding of farmers’ decision-making process and its drivers. 

Policy implications   

(i) The application of conservation techniques directly links to drought 

conditions by conserving moisture, facilitating nitrogen-fixation, and increasing the soil-

carbon content, leading to mitigation of the adverse impacts of climatic change (Khonje 

et al., 2015; Manda et al., 2016). Consequently, we expect that if farmers observe 

increased climatic variability and climatic change over the years, they would be more 

likely to adopt soil and water conservation techniques. As expected, findings from this 

study indicate that Vietnamese farming households have been adapting to changing 

climatic conditions, specifically the long-term warming and the increasing number of 

extreme events, by applying soil and water conservation practices. Thus, farmers’ 

adoption of those conservation practices is highly correlated with climate variability and 

change. Therefore, it is necessary to facilitate climate-resilient strategies such as the use 

of soil and water conservation measures to improve farmers’ adaptive capacity to cope 

with climatic uncertainty and mitigate its negative impacts. 

(iii) Findings also reveal that access to information on farm-gate price of rice 

and the weather forecast is associated with households that have decided to apply 

conservation techniques. Consequently, it is necessary to highlight the important role of 

providing meteorological and market information to promote adaptation practices to cope 

with ongoing climatic changes.  
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 Limitations and further research  

Although this research provides important insights into farming in changing production 

conditions in Vietnam, several limitations were identified which generate suggestions for further 

research. The primary target of the study was rice growing households in rural Vietnam where 

rice is still the dominant crop. However, the income generating activities of these households are 

diverse, and they do not solely produce rice crops. Thus, a more comprehensive approach that 

also takes into account the roles and effects of other economic activities on rural households’ 

decision-making processes would be necessary to fully understand their behavioural responses 

in a changing production environment.  

Further, there may exist heterogeneity in the distribution of returns to using agricultural 

practices across the sample of farmer households in this study. It is very likely that factors 

associated with households with low returns are different from those with high returns. Thus, 

future work that separates observations along the distribution of returns across the sample of rice 

growers may provide more intuitive information, especially policy implications for different 

groups of farmers such as by location or region and at different quintiles in the distribution of 

productivity or income.   

There are also important avenues for further research on the extent that changes in climate 

will affect rice productivity and the potential impact of adoption of adaptation practices on rural 

households’ welfare. Filling this gap could significantly increase our understanding of how those 

changes are affecting farmers’ overall wellbeing.  

Finally, empirical studies on climate change adaptation explicitly benefit from 

projections of future climatic variability and change. These projections in combination with 

baseline information could be used to build and model future scenarios, which can predict the 

likely impact of changing climate on human activities and also assess the effectiveness of a range 

of adaptation strategies on climate change mitigation.  
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Vietnamese farmers have been operating their farms under a continuously transforming 

policy environment over recent decades, specifically since the Renovation Policy in the mid-

1980s. Such policy transitions have created more favourable conditions for the development of 

the agricultural sector to meet the growing demand for food, both domestically and 

internationally. However, new challenges are emerging, climate change in particular, and their 

impacts on agricultural production have been increasingly pronounced. In an era with new and 

emerging challenges, further policy action is required to help the agricultural sector adapt to 

ongoing changes in the production environment. 
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APPENDICES 

 

Appendix 2A: Growth in gross agricultural output in selected Asian countries, 1990-2013 

 

Note: The FAO indices of agricultural production show the relative level of the aggregate volume of agricultural production for each year in 

comparison with the base period. In this figure, indices based on the 2004-06 period have been recalculated taking indices for 1990 as 100. 

Source: Food and Agriculture Organization Corporate Statistical Database – FAOSTAT; OECD, 2015. 
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Appendix 2B: The estimated results of year dummy and within-household means variables for 

two-stage procedure 

 

 

 (1) (2) (3) (4) 

Decision to apply Seed choice (b/se) Fertiliser choice 

(b/se) 

Pesticide choice 

(b/se) 

Machinery choice 

(b/se) 

tenureumn 

 

wageumn 

 

urbanumn 

 

hsizeumn 

 

farmsizeumn 

 

laborwumn 

 

gatepriceumn 

 

extensionumn 

 

creditumn 

 

year1 

 

year3 

 

year2 

 

year5 

 

year6 

0.69157 

(0.4959) 

1.07360 

(1.6735) 

-0.45398 

(0.6405) 

0.00711 

(0.0519) 

-0.00004*** 

(0.0000) 

0.00476 

(0.0031) 

-0.07327 

(0.0453) 

0.39418 

(0.2181) 

-0.28709 

(0.2147) 

-0.10054 

(0.1640) 

-0.22721 

(0.1333) 

0.03236 

(0.1386) 

-1.15475*** 

(0.2260) 

0.42232** 

(0.1361) 

1.99418*** 

(0.4558) 

-1.10173 

(1.8479) 

0.82973 

(0.7041) 

-0.05954 

(0.0773) 

-0.00003** 

(0.0000) 

0.00309 

(0.0037) 

0.01714 

(0.0627) 

0.45620 

(0.2524) 

0.31029 

(0.2433) 

0.22762 

(0.1905) 

-0.11833 

(0.1662) 

0.30289* 

(0.1329) 

-0.53010** 

(0.2010) 

0.13750 

(0.1435) 

-1.87297*** 

(0.5263) 

0.24987 

(1.6556) 

0.19345 

(0.6341) 

-0.06445 

(0.0524) 

0.00004** 

(0.0000) 

-0.00715* 

(0.0031) 

-0.06987 

(0.0465) 

0.19733 

(0.2384) 

0.06266 

(0.2104) 

0.16629 

(0.1829) 

-0.31301* 

(0.1396) 

0.25973 

(0.1478) 

-0.31100 

(0.3369) 

-0.11193 

(0.1569) 

-0.59523 

(0.5806) 

3.01581 

(2.1764) 

-1.20266 

(0.8348) 

-0.02934 

(0.0718) 

0.00002 

(0.0000) 

-0.01800*** 

(0.0042) 

-0.02946 

(0.0696) 

0.95453** 

(0.2965) 

-0.20744 

(0.2552) 

0.29209 

(0.2078) 

-0.32923 

(0.2199) 

-0.14081 

(0.1658) 

0.10489 

(0.2813) 

-0.21369 

(0.1777) 
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Intensity of 

application 

Seed used Fertilisers used Pesticides used Machinery used 

Tenureumn* 

 

wageumn 

 

urbanumn 

 

hsizeumn 

 

farmsizeumn 

 

laborwumn 

 

gatepriceumn 

 

extensionnumn 

 

creditumn 

 

year1 

 

year3 

 

year2 

 

year5 

 

year6 

0.03490 

(0.3037) 

-1.37509* 

(0.6049) 

0.16263 

(0.3634) 

3.84682* 

(1.5853) 

0.00001 

(0.0000) 

0.01168 

(0.0412) 

-0.00298 

(0.0023) 

-0.02922 

(0.0317) 

0.35315* 

(0.1661) 

0.02159 

(0.2078) 

0.29228 

(0.1665) 

-0.32107** 

(0.1093) 

-0.49320*** 

(0.1266) 

-0.53210* 

(0.2286) 

-1.55586 

(1.1556) 

-4.40534*** 

(1.0112) 

2.99784 

(2.9147) 

0.00007** 

(0.0000) 

-0.11270 

(0.1015) 

-0.00353 

(0.0050) 

0.23735** 

(0.0789) 

-0.63551 

(0.3970) 

-0.51840 

(0.4414) 

0.63745* 

(0.2650) 

-0.52849* 

(0.2486) 

0.16540 

(0.3324) 

-0.08284 

(0.4638) 

-0.62981* 

(0.2651) 

-0.59314 

(0.3479) 

-2.73145*** 

(0.7676) 

2.34544** 

(0.8954) 

0.00005*** 

(0.0000) 

-0.18136*** 

(0.0485) 

-0.00240 

(0.0021) 

0.04671 

(0.0597) 

-0.26590* 

(0.1341) 

0.01904 

(0.1374) 

0.35720** 

(0.1193) 

-0.40311*** 

(0.1139) 

0.19170 

(0.1427) 

-0.13606 

(0.1884) 

-0.29318** 

(0.0938) 

0.32342 

(0.9194) 

-0.37833 

(0.7386) 

-0.91564 

(2.4292) 

-0.00002* 

(0.0000) 

-0.12595 

(0.0936) 

0.02466*** 

(0.0064) 

0.07994 

(0.0625) 

-0.55992 

(0.3238) 

0.06292 

(0.3252) 

0.42674* 

(0.2128) 

-0.40877* 

(0.2058) 

-0.81771** 

(0.2757) 

-1.81570*** 

(0.3384) 

-0.06680 

(0.1762) 

Note: * (_umn) denote within-household means of variables for Correlated Random Effect (CRE) 
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Appendix 2C: Testing underlying assumptions in the estimation models 

Collinearity Diagnostics 

Variable VIF Tolerance Variable VIF Tolerance 

IMR1 1.26 0.7974 credit 1.41 0.7077 

IMR2 2.49 0.4013 wage 1.05 0.795 

IMR3 5.28 0.1894 urban 6.17 0.166 

IMR4 1.1 0.7901 tenure 1.48 0.6738 

hsize 1.25 0.7978 year1 1.76 0.5689 

farmsize 1.31 0.7615 year3 3.5 0.286 

labourw 7.18 0.1393 year2 2.04 0.4902 

gateprice 1.88 0.5329 year5 4.71 0.2125 

extension 1.73 0.5773 Mean VIF 2.47 

Heteroskedasticity Diagnostics (Breusch-Pagan hettest  H0:  no heteroskedasticity) 

 

Seed use equation 

Fertilisers use 

equation 

Pesticides use 

equation 

Machinery use 

equation 

Chi2(1): 241.2*** 208.0*** 266.6*** 168.7*** 
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Appendix 2D: A shift in the distribution of productivity in relation to the adoption of agricultural 

technologies adopted in the sample 

 

Appendix 2E: A shift in the distribution of income in relation to the adoption of agricultural 

technologies adopted in the sample 
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Appendix 2F: Pairwise correlations between variables 

 
IMR1 IMR2 IMR3 IMR4 hsize farmsize   labourprice gateprice extension credit wage urban tenure year1 year3 year2 year5 year6 

IMR1 1 
                 

IMR2 0.1753 1 
                

IMR3 0.3724 -0.1139 1 
               

IMR4 -0.5678 -0.0605 -0.6013 1 
              

hsize 0.0532 -0.0833 0.0507 0.0786 1 
             

farmsize   0.0968 -0.0614 -0.0874 0.0408 0.1151 1 
            

labourprice -0.5424 -0.0642 -0.569 0.6189 -0.0569 -0.0906 1 
           

gateprice 0.0038 -0.0646 -0.183 0.2814 -0.0082 0.1045 0.1918 1 
          

extension -0.1402 -0.3958 0.2462 -0.1081 0.0367 0.0934 -0.015 -0.0641 1 
         

credit 0.0172 -0.1427 -0.0176 0.0667 0.05 0.0809 0.1033 0.0399 0.0394 1 
        

wage -0.5238 0.1604 -0.1324 0.2777 -0.044 -0.0052 0.5802 0.3329 -0.2174 0.1502 1 
       

urban -0.2298 0.193 -0.1405 0.6055 -0.0026 0.0528 0.445 0.3117 -0.3237 0.1922 0.223 1 
      

tenure -0.0833 -0.4364 -0.0109 -0.0329 0.0667 -0.0024 -0.0473 0.0041 0.0924 -0.0508 -0.0121 -0.0076 1 
     

year1 0.168 -0.1928 0.2797 -0.2812 0.0475 -0.0332 -0.0189 -0.1313 0.2023 -0.0363 -0.4033 -0.4147 -0.0297 1 
    

year3 0.5129 0.1352 0.2636 -0.3405 0.0413 0.134 -0.4473 -0.1417 -0.038 0.0604 -0.3036 -0.0244 0.0222 -0.0876 1 
   

year2 0.173 0.0089 -0.4114 0.2114 0.0253 0.002 0.1556 0.1279 -0.2234 0.0911 0.2854 0.4506 -0.0234 0.0647 0.1181 1 
  

year5 -0.3035 0.1822 -0.3931 0.4828 -0.0503 -0.0401 0.2917 0.1392 0.0185 0.0015 0.5714 0.4029 -0.0082 -0.1054 -0.2567 0.1602 1 
 

year6 0.1128 -0.0105 0.2377 -0.232 -0.0465 0.0163 -0.3572 -0.156 -0.0471 -0.2028 -0.3046 -0.2801 0.0376 0.0514 0.1615 -0.0149 0.1088 1 
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Appendix 2G:  The estimated results of marginal effects for two-stage procedure 

Variable Improved seed Fertilisers Pesticides Machinery 

Household size 0.00465 0.00524 0.00088 -0.02148 
 0.0091 0.0095 0.009 0.0121 

Farm size 0.00000665*** 0.00000467** -1.42E-06 -0.0000056** 
 1.89E-06 1.96E-06 2.18E-06 2.29E-06 

Tenure 0.11283** 0.1846*** 0.12284** 0.03666 
 0.0573 0.0295 0.0502 0.1019 

Credit 0.02801 0.03046 -0.04562 0.03458*** 
 0.0236 0.0169 0.0229 0.0174 

Labour wages(t - 1) 0.00039 0.00005 0.002*** 0.002*** 

 0.0004 0.0002 0.0005 0.0005 

Farm-gate price(t - 1) 0.00826* 0.0078** 0.00767** 0.00089 

 0.0041 0.0025 0.0024 0.0036 

Extension 0.0403* 0.0644*** 0.02214 -0.01672 

 0.0245 0.0187 0.0255 0.0307 

Real agricultural 

wage 
0.45976*** 0.04248* 0.02632 0.20737*** 

 0.0426 0.0239 0.0472 0.0565 

Urban population 0.12083*** -0.02494 0.03592** 0.04004** 

 0.0136 0.01 0.0142 0.0181 
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Appendix 3A: Details of homogeneity tests for climate series 

Suppose that we have a series of the meteorological variable of a sequence x1, x2… xn with 

mean ( x  ) and standard deviation . L is the length of that series and k is likely to be the year 

of a break or change point.  

 

Standard normal homogeneity test (Alexandersson 1986) 

The test calculates the statistic value Tk by comparing the mean (M) of the first k records with 

that of the remaining (n-k) records (Jaiswal et al., 2015). k will be considered as a break point 

if maximising Tk: 

2 2

1 2( )kT kM n k M   , 

where M1 and M2 are calculated as follows: 

1

1

1 ( )k
i

i

x x
M

k 


   

2

1

1 ( )n
i

i k

x x
M

n k  





  

 

 

Pettitt’s test (Pettitt, 1979) 

Consider the two subsamples: x1, x2… xt and xt+1, xt+2… xL, where t is likely to be the change 

point. The Ut index is calculated as follows: 

1 1

( ),j

t n

t t

i j t

U sign x x
  

   
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where: 

1, ( ) 0

( ) 0, (

    

    

 

) 0

1,  ( )  0

t j

t j t j

t j

if x x

sign x x if x x

if x x

  
 

    
    

 

If there is a change point t, tU  will reach the maximum value KL at that point: 

1
max t

t L
LK U

 
  

Then the probability that t is the change point is approximated by (Pettitt, 1979): 

2

2 3

6
1 exp LK

p
L L

 
   

 
 

 

Buishand’s test (Buishand, 1982) 

The cumulative deviation from the mean for kth observation of a sequence x1, x2… xn with 

mean ( x  ) is defined as the adjusted partial sum (S): 

* 0kS   and 
*

1

( )
k

ik

i

S x x


    k = 1,…., n 

If a series is homogenous with no change point detected, 
* 0kS   because any variation from 

the mean will fluctuate around that mean. However, if a break exists at kth observation in the 

series, 
*

kS  will reach a maximum or minimum value and these values could be rescaled to (R) 

by the standard deviation   to test for the significance of the change point: 

* *

0 0

(max min ) /k k
k n k n

R S S 
   

   
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Von Neumann’s test (Wijngaard et al., 2003) 

The Von Neumann’s test defines the ratio N as the difference between the year-to-year mean 

square and the variance of data series:  

1
2

1

1

2

1

( )

( )

n

i i

i

n

i

i

x x

N

x x


















 

If a series is homogenous, the expected value of N=2. When there is a break point, N will have 

a value that is lower than E(N) (Buishand, 1982). 

 

Appendix 3B: An example of the interpolation process of climatic variables 
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Appendix 4A: Land and water conservation technologies 

Note: Land and water conservation technologies adapted from FAO (Critchley, 1991; Crozier and 

Corps, 1986), Sustainable Sanitation and Water Management (SSWM), and (Recha et al., 2014) 

 

 

Soil bunds Rock bunds 

  

 

 

Grass lines Terraces 
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Conservation 

technologies 

Description 

Soil bunds / 

Rock bunds 

Bunds are often applied to land areas with slight slope below 5%. Bunds are 

usually constructed either with soil or rocks for the purpose of preserving 

runoff, preventing soil erosion, and increasing soil moisture. These methods 

are widely used in many areas with harsh climatic conditions.  

Grass lines Grass lines are planted along contours to reduce the amount of water flowing 

down the slope and conserve soil. Fodder grass and natural grass can be used 

to construct grass lines.  

Terraces Terracing is the process of reducing the length and/or steepness of a slope in 

a planted zone using soil embankments and channels built along the slope. 

The change in slope profile reduces runoff speed - especially on erosion-

prone uneven lands - thus reducing soil erosion. It also allows infiltration. 

 

Appendix 4B: Methods of calculation 

Growing degree-days (GDDs) (McMaster and Wilhelm, 1997) 

GDDs are calculated by taking the average of the daily maximum and minimum 

temperatures compared to the lower threshold or base temperature (Tbase = 8 °C for rice in this 

case) during the growing season. As a formula: 

 

The GDD for a day is equal to Tbase subtracted from the daily average temperature if 

this average is greater than the threshold temperature Tbase. If the daily mean temperature is 
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lower than the base temperature Tbase then GDD=0. Adding the daily GDD of all the days in 

the growing season will produce accumulated GDDs for a plant during its growing season. The 

concept of GDDs assumes that there is a base or lower threshold temperature which limits a 

plant to grow or grow very slowly. 

Standardised Precipitation Index (SPI) 

The SPI is determined by normalising the precipitation for a given weather station after 

it has been fitted to a probability density function as described by McKee et al. (1993). The 

SPI is calculated by dividing the difference between normalised seasonal amount of rainfall at 

a location and its long-run seasonal mean by the standard deviation as follows:  

𝑆𝑃𝐼 =  
𝑥𝑖−𝑥𝑖̅̅ ̅ 

𝜎
 , 

where 𝜎 is the standard deviation, 𝑥𝑖 is seasonal precipitation at the ith weather station, 

𝑥𝑖̅ is long-term mean precipitation during the study period at the same location. 

SPI classification 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-.99 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 
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Appendix 4C: The Standardised Precipitation Index (SPI) across 6 study provinces (1975-2012) 
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Appendix 4D: Description of outcome, control, and explanatory variables (1992-2012) 

 Full sample (mean/sd) Adopters (mean/sd) Non-adopters (mean/sd) 

1992 1998 2006 2008 2010 2012 1992 1998 2006 2008 2010 2012 1992 1998 2006 2008 2010 2012 

Land conservation 0.71 

0.46 

0.58 

0.49 

0.65 

0.48 

0.81 

0.39 

0.84 

0.36 

0.83 

0.38 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

SPI45 -0.43 

0.45 

-0.43 

0.87 

-1.26 

0.81 

-0.21 

0.71 

-0.05 

0.54 

-0.06 

0.34 

-0.40 

0.37 

-0.44 

0.90 

-1.25 

0.82 

0.24 

0.50 

-0.09 

0.49 

-0.06 

0.32 

-0.51 

0.60 

-0.44 

0.80 

-1.27 

0.80 

-0.06 

0.69 

0.01 

0.56 

-0.11 

0.20 

Drought 0.61 

1.26 

0.89 

1.47 

1.29 

1.92 

1.42 

2.31 

0.63 

1.22 

1.13 

1.91 

0.64 

1.31 

0.93 

1.53 

1.35 

2.01 

1.46 

2.42 

0.68 

1.33 

1.11 

1.90 

0.53 

1.14 

0.87 

1.41 

1.17 

1.74 

1.21 

1.85 

0.37 

 .92 

1.00 

1.95 

GDDs 4412.7 

362.9 

4475.6 

386.3 

4286.5 

470.7 

4333.1 

381.7 

4499.3 

471.3 

4487.2 

424.8 

4384.1 

301.1 

4456.6 

409.3 

4256.4 

437.2 

4278.6 

464.4 

4319.2 

462.2 

4445.0 

392.7 

4469.2 

473.8 

4482.2 

343.3 

4330.3 

517.5 

4416.5 

452.1 

4654.7 

353.8 

4480.9 

433.1 

AGDDs 3977.6

482.1 

3946.4 

563.8 

4075.4 

496.2 

4093.5 

482.8 

4115.7 

475.2 

4130.5 

470.2 

3905.4 

437.8 

4006.0 

544.1 

4006.5 

455.1 

4149.3 

455.0 

4061.0 

410.2 

4051.0 

444.8 

4132.1 

537.7 

3834.1 

567.3 

4170.0 

542.8 

4282.7 

504.4 

4229.1 

441.1 

4215.4 

424.7 

Household size 4.97 

2.00 

4.81 

1.78 

4.75 

1.53 

4.64 

1.51 

4.46 

1.62 

4.38 

1.67 

4.97 

1.92 

4.75 

1.88 

4.89 

1.52 

4.77 

1.55 

4.46 

1.61 

4.46 

1.64 

5.05 

2.15 

4.98 

1.59 

4.47 

1.53 

4.64 

1.75 

4.63 

1.67 

4.33 

1.69 

Credit 0.48 

0.50 

0.52 

0.50 

0.69 

0.46 

0.52 

0.50 

0.57 

0.50 

0. 61 

0.20 

0.44 

0.50 

0.53 

0.50 

0.71 

0.46 

0.53 

0.50 

0.59 

0.49 

0.70 

0.22 

0.54 

0.50 

0.53 

0.50 

0.65 

0.48 

0.64 

0.49 

0.63 

0.49 

0.41 

0.30 

Experience 12.24 

5.29 

11.85 

8.68 

11.63 

4.63 

13.11 

4.40 

14.70 

4.36 

16.58 

4.51 

12.26 

5.15 

12.92 

8.99 

11.36 

3.83 

13.42 

4.66 

14.8 

4.18 

16.81 

4.41 

12.19 

5.64 

10.37 

8.03 

12.12 

5.84 

13.80 

4.92 

11.60 

6.50 

15.52 

4.86 

Farmsize 4141.4 

600.9 

2219.5 

4979.3 

3821.5 

5046.3 

3715.9 

5865.2 

3585.7 

5884.8 

3751.7 

7034.9 

3524.2 

5063.1 

2432.6 

5080.7 

3972.1 

7599.4 

4311.8 

7268.0 

3973.9 

6658.4 

3250.4 

6019.6 

5624.0 

7799.1 

1928.3 

4841.4 

3649.5 

7949.9 

4328.0 

4768.1 

3280.9 

3986.4 

6122.1 

7359.9 

Information 0.63 

0.48 

0.68 

0.47 

0.36 

0.48 

0.03 

0.18 

0.43 

0.50 

0.53 

0.50 

0.73 

0.44 

0.69 

0.47 

0.39 

0.49 

0.06 

0.23 

0.49 

0.50 

0.55 

0.50 

0.38 

0.49 

0.67 

0.47 

0.29 

0.46 

0.00 

0.00 

0.56 

0.51 

0.67 

0.47 

Labour wages 4.81 

1.62 

18.62 

1.92 

23.52 

6.11 

63.49 

17.69 

84.64 

29.42 

126.44 

50.11 

5.02 

1.64 

18.36 

1.68 

22.98 

6.07 

55.94 

15.70 

77.59 

24.86 

130.23 

53.50 

4.28 

1.46 

18.92 

2.13 

24.57 

6.08 

60.30 

12.63 

81.47 

23.52 

119.86 

41.56 

Farm-gate price 1.20 

0.30 

1.77 

0.34 

2.45 

0.31 

4.43 

3.56 

5.58 

5.11 

6.18 

4.42 

1.20 

0.23 

1.74 

0.33 

2.43 

0.27 

4.86 

3.48 

6.40 

7.40 

6.21 

4.66 

1.20 

0.43 

1.80 

0.36 

2.49 

0.38 

2.31 

1.95 

4.82 

0.34 

5.90 

0.86 

 




