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Climate smart rice cropping systems in Vietnam 

 

Rice is the primary food crop covering 165 million ha that is more than one tenth of the worldwide-

cultivated area. Rice small-scale farming, representing 200 million households, in South-East Asia 

represents 144 million ha on less than 1ha farms. 

In Vietnam, increases in rice production are the overlapping effect of the Green Revolution as well as 

political and economic reforms (Doi Moi) put in place from 1986 onward. It is undeniable that intensive 

rice farming, which relied heavily on irrigation, has provided huge productivity gains under conditions 

of intensive resource use and a controlled, predictable environment. Hydraulic controls, regulating 

floods and preventing saline intrusion, have indeed boosted production in the Mekong Delta and 

others basins of production. This has partly been through land reclamation but mostly by enabling 

double or triple cropping in a single year. However, rice production is increasingly constrained by water 

scarcity and climatic events (i.e., floods, drought, and sea level rise in the deltas). High dependency on 

energy, technologies, engineered landscapes, and infrastructures have also increased the fragility of 

the rice farming system, which can be seriously threatened if any elements of its production cycle are 

disrupted. 

In addition, climate change has become an important issue. Agriculture is one of the principal sources 

of greenhouse gas (GHG) emissions globally (IPCC, 2013). Flooding of irrigated rice fields produces 

anaerobic soil conditions which are conducive to the production of methane (CH4). The annual CH4 

emission from rice paddies has been estimated to be 36 Tg year−1, contributing approximately 18% of 

the total anthropogenic CH4 emission to the atmosphere. In Vietnam, rice cultivation accounts for one 

third of the total GHG emissions. 

Rice farming is facing a dual challenge of delivering sufficient and nutritious food to meet the projected 

demands of population growth and markets, and overcoming issues such as climate change, soil 

fertility depletion and water scarcity through sustainable agricultural intensification. Soil fertility 

depletion, loss of biodiversity, water scarcity and sea level rise in vulnerable deltas are major 

constraints.  

Vietnam is the 4th rice producer with 40 million tons of paddy and ranks as the 2nd largest global 

exporter, selling ∼ 8 million tons of milled rice (2014). Even if new exporters like Cambodia and 

Myanmar arise, if several importing countries in Africa have initiated support policy to reduce their 

food dependency, maintaining the Vietnamese exports capacity to address growing demands from 

China and developing countries in Middle East and Africa is of utmost importance to prevent global 

market crisis and its strike on Poor like in 2008. 

In Vietnam, population increase and intensification of economic development are leading to the 

changes in rice cropping patterns and management intensity (i.e., multicropping, water management, 

fertilizer nature and use, and cultivars). Throughout the year, changes in the rice cropping patterns are 

driven by the availability of water supply and crop management practices, leading to a variety of land 

cover patterns across the regions. The diversity of rice cultivation, soil, water management, inorganic 

fertilizers uses have a different contribution to GHG emissions. Different forms of water saving 

techniques as alternate wetting and drying (AWD) and midseason drainage (MSD) have been 

developed, assessed and disseminated to reduce CH4 emissions in several countries including Vietnam. 

Irrigated rice is not only the largest source of CH4, it represents also one of the most promising targets 

for mitigating CH4 emissions and reducing the net GHG emissions from the use of agricultural inputs 

and by sequestering atmospheric CO2 into soil organic C.  
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Alternative management techniques are therefore needed to reduce the environmental burden 

associated with rice cultivation without jeopardizing rice production, commoditization and global food 

security. There is a need to bring together a large range of stakeholders with: 

- policy-makers to deal with changes linked to multiple drivers such as socio-economic 

evolutions (i.e., urbanization, population growth, new trade-offs around water resource) and 

environmental changes (i.e., climate change, its immediate impact on weather variability, 

medium and long term impacts on average temperature and sea level rise), 

- civil engineers to design new forms of infrastructures facilitating sediment deposition 

recognized as a potential adaptation strategy and incorporated recently into the management 

plans of the Mekong delta (MDP, 2013), 

- farmer’s organizations and agronomists to design alternative and innovative diversified rice 

farming systems to first adapt these systems to environmental attributes that are becoming 

unstable and changing at an accelerating rate. 

Agricultural policies need to account for the needs of both mitigation and adaptation. Investing 

substantially in adapting rice farming to climate change can result in substantial mitigation co-benefits 

(i.e., CH4 reduction, soil organic C accumulation, improving nutrients cycling, water and nutrient-use 

efficiency, and improved straw management).   

Rice cropping systems should be driven by organic carbon and water management strategies 

embedding a high functional diversity (crops, relay/cover crops, and soil biota), to build soil resilience, 

to advance in rice farming sustainability, and capacity to deal with risks at farms and irrigation 

schemes/water management units levels. 

The aim of this paper is to introduce adaptation measures that have the potential, in the multiple 

Vietnamese rice agro-ecosystems, with specific emphasis on Mekong River Delta, to assist in designing 

a new generation of rice farming systems with strengthened resilience and adaptation capacity in front 

of climate change, enhancing natural capital and ecosystem services. 
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Context 

Doi Moi and the green revolution 

Vietnam is the 4th rice producer and ranks as the 2nd largest global exporter, selling ∼ 8 million tons of 

milled rice (2014), that is one fifth of the globally trade volume ($4 billion in rice exports). Rice 

production has jumped from 16 million tons in 1986 to ∼ 40 million tons nowadays. The Mekong Delta 

has generated the largest share of that increase, delivering 57% of the national production gain 

between 1995 and 2008.  

The reason behind this growth is the overlapping effect of the Green Revolution (i.e., high yielding rice 

varieties, irrigation, pesticides, and fertilizers) since the 1970s as well as political and economic reforms 

(Doi Moi) put in place from 1986 onward to facilitate the transition from a centralized economy to a 

socialist-oriented market economy (Fortier and Tran Thi Thu Trang, 2013). Doi Moi abolished 

agricultural cooperatives, allocated communal land to individual farm households, promoted free-

market incentives and foreign investments, removed price controls on agricultural goods and enabled 

farmers to sell their goods in the open market.  

Hydraulic controls, regulating floods and preventing saline intrusion, have drastically increased 

production in the Mekong Delta and others basins of production. This has partly been through land 

reclamation but mostly by enabling double or triple cropping (Mekong delta) in a single year. 

Productivity gains were also obtained through the the adoption of high-yielding cultivars across the 

country, rising to about 90% by 2000 (Tran Thi Ut and Kajisa, 2006) and through the increasing use of 

inorganic fertilizers and pesticides (Pingali et al., 1997; Van Toan et al., 2013). 

With time, the focus of Doi Moi changed to industrialization. As a consequence of this new policy 

orientation, many productive rice areas were converted to industrial and urban land uses leading to a 

decrease in rice cultivated areas and to a higher level of intensification of rice production.  

Trading and rice policies 

Present rice policies in Vietnam are a balance between maintaining domestic food security and 

promoting rice exports. Government intervention is limited in the domestic market and a majority of 

rice exports in the country are made through state-owned trading enterprises (50% share), particularly 

by the Vietnam Food Association (VFA). VFA buys rice from farmers to keep the price stable and also 

to prevent rice importers from haggling prices down too low during the harvest seasons. Vietnamese 

rice strains tend to be more diversified than in the past notably with the development of more lucrative 

type like fragrant and glutinous rice but remain of low or middling quality, in comparison with  the 

premium varieties (Hom Mali) grown in Thailand. In addition, Myanmar is emerging again as an export 

rival. The bulk of Vietnam’s crop is sold directly to other governments, but some of its biggest clients, 

including Indonesia and the Philippines, are boosting domestic production.  

Rice and poverty reduction 

Hoang et al. (2016) emphasized that rice production and rice productivity did not contribute 

significantly to poverty alleviation. They also observed that increases in rice prices did not contribute 

to poverty reduction, even for the two regions with the largest rice production, the Mekong River Delta 

and the Red River Delta. More generally, their analysis suggests that: 

• Households who were unable to benefit from Vietnam’s economic reforms in the 1990s and 

remained poor in that period were likely to belong to the group of the most destitute 

households. Consequently, it seems that rice price rises did not help these households with 

moving out of the poverty trap they had fallen into even in the following decade. 

• The majority of these extreme poor households owned only small fields, so they were unable 

to experience the positive income effect of rice price increases as they were mainly rice 

consumers. 
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• Finally, geographic barriers (between delta and northern mountainous areas) played an 

adverse role for the higher rice prices to reach the extreme poor. 

As a current trend in the region, diversification out of agricultural production is likely to assist with 

poverty alleviation.  

Main rice-growing regions 

The Red River delta and the Mekong Delta are the two main rice producers in Vietnam with 2 to 3 rice 

cycles (Mekong Delta) and diversification in the fall/winter after summer season rice (Red River Delta). 

High and short yielding varieties are widely used with mineral fertilizers and pesticides. The other 

major rice-growing regions are the northeast, and the north-central coast. 

In the Mekong Delta, the study conducted by Nguyen et al. (2012) emphasizes the diversity of rice 

cropping patterns throughout the year (Figure 1), driven by the availability of water supply, crop 

management practices, flood occurrence in Summer-Autumn and saline intrusion influence in Winter-

Spring leading to a variety of land cover patterns across the region. The diversity and changes in rice 

cropping patterns and impacts of urbanization on rice intensification have a strong influence on GHG 

emissions. 

The Mekong River Delta (MRD) has played a central role in sustaining Vietnam’s high level of rice 

production. The delta (∼ 4.0 Mha of rice production) produces more than 60% of the national rice 

production and represents approximately 90% of annual rice exports. Although the Mekong Delta is 

naturally affected by saline intrusion due to tidal influences, sea level rise (SLR) is likely to increase the 

salinity problem in the future particularly when combined with other factors such as high groundwater 

extraction rates, changes in river discharge rates and timing due to climate change or upstream and 

transboundary dam operations on river’s catchments.  

The Mekong Delta faces both challenges: high population density and the need to sustain it by 

intensifying agriculture. Additionally, national food security considerations and export aspirations 

contribute to the pressure on the Mekong Delta’s agricultural production. Several studies also warn 

that the Mekong delta is showing signs of environmental stress. The earth dykes that were built to 

keep seasonal floods from inundating the rice paddies prevent the Mekong River’s alluvial floodwaters 

from bringing nutrients to the delta’s soil.  

Yet, regardless of such achievements, the country’s capacity to keep food production growing at par 

with demand appears uncertain due to (i) the steady decline in cropping areas, particularly paddy 

fields, observed over the past decade, and (ii) the soaring impacts of climate change due to the low 

resilience habit of irrigated rice farming. The adverse weather conditions in the last years have also 

contributed to emphasize the sensitivity of rice farming to climate variability and climate changes. 
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Figure 1: Map of Rice cropping pattern in the Mekong Delta in 2008 (From Land resource department 

in Ngo and Wassmann, 2016). 

 

 

 

  



6 

 

Contribution of agriculture and rice farming to the emission of 

greenhouse gazes 

Agriculture and the global GHG emissions 

Annual GHG emissions from agricultural production in 2000 – 2010 were 

estimated at 5.0 – 5.8 Gt CO2eq/yr, representing 10-12% of total global 

anthropogenic emissions of greenhouse gases. GHG emissions from 

agriculture are predominately due to nitrous oxide (N2O) emissions from N 

fertilization and methane (CH4) emissions from livestock and rice cultivation. 

Of the total anthropogenic emissions, CH4 and N2O have a large global 

warming potential (GWP) that is 25 and 298 times, respectively, greater than 

CO2 over a 100-year period.  

 

Figure 2: Agriculture and emission of greenhouse house gases (from Chapuis-Lardy, 2016 and IPCC 

2006).  

Of global anthropogenic emissions, agriculture accounts for about 60% of N2O and about 50% of CH4 

(IPCC, 2013).  



7 

 

 

Figure 3: Top: Agriculture, Forestry, and Other Land Use (AFOLU) emissions for the last four decades. 

For the agricultural sub-sectors emissions are shown for separate categories, based on FAOSTAT, 

(2013). Emissions from crop residues, manure applied to soils, manure left on pasture, cultivated 

organic soils, and synthetic fertilizers are typically aggregated to the category ‘agricultural soils’ for 

IPCC reporting. For the Forestry and Other Land Use (FOLU) sub-sector data are from the Houghton 

bookkeeping model results (Houghton et al., 2012). 

Between 1970 and 2010, emissions of CH4 increased by 20 %, whereas emissions of N2O increased by 

45 to 75 %. Despite large annual exchanges of CO2 between the atmosphere and agricultural lands 

(photosynthesis vs. plant respiration, decay of residues and soil organic C oxidation), the net flux is 

estimated to be approximately balanced, with CO2 emissions around 0.04 Gt CO2/yr only (IPCC, 2014). 
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Figure 4: Agriculture, Forestry, and Other Land Use (AFOLU) emissions for the last four decades and 

per region LAM: Latin America, MAF: Middle East and Africa, ASIA: Asia, EIT: Economies in Transition, 

OECD-1990.  

  

 

Figure 5: Annual GHG emissions for the six key sectors. AFOLU: Agriculture, Forestry, and Other Land 

Use (from IPCC 2014. p 381) 
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Rice specificities in GHG emissions 

Agriculture releases to the atmosphere significant amounts of CO2, CH4, and N2O (IPCC, 2013). CO2 is 

released largely from microbial decay or burning of plant litter and soil organic matter (Janzen, 2004). 

CH4 is produced when organic materials decompose in oxygen-deprived conditions, notably from 

fermentative digestion by ruminant livestock, from stored manures, and from rice grown under 

flooded conditions (Mosier et al. 1998). CH4 is a potent GHG with a global warming potential (GWP) of 

25 (IPCC, 2006), which means that it is 25 times more effective in trapping heat inside the Earth’s 

atmosphere than CO2. Soil CH4 emission encloses a series of complex processes involving methanogens 

and methanotrophs microbial communities (Le Mer and Roger, 2001), and is dependent on soil 

dissolved organic carbon (DOC) availability (Bossio et al., 1999). Under anaerobic condition of 

submerged soils of flooded rice fields, methane is produced and much of it escapes from the soil into 

the atmosphere via gas spaces in the rice roots and stems, and the remainder CH4 bubbles up from the 

soil and/or diffuses slowly through the soil and overlying flood water. 

 

Figure 6: Principal pathways of methane production and emission in an inundated rice field (adapted 

from Le Mer et al., 2001) 

Soil N2O is formed predominantly through nitrification and denitrification processes, and is often 

enhanced when available nitrogen (N) exceeds plant requirements, especially under wet conditions 

(Smith and Conen, 2004).  
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Figure 7: water and soil layers in an inundated rice field and dynamics of N2 (adapted from Chapuis-

Lardy, 2016) 

Rice cultivation is a significant source of CH4 emissions (Linquist et al., 2012), contributing about 10–

14% of total global anthropogenic CH4 emissions (Nazaries et al., 2013). Flooding of irrigated rice fields 

produces anaerobic soil conditions which are conducive to the production of CH4. Methane is produced 

anaerobically by methanogenic bacteria, which thrive well in paddy rice fields. Neue et al. (1997) 

observed two distinct peaks of CH4 fluxes in tropical rain-fed lowland rice. The first peak occurs within 

one month after transplanting and is mainly controlled by CH4 production from soil organic matter and 

organic amendments. The second peak occurs at the heading or flowering stage and is mainly governed 

by the stable low soil redox potential and neutral soil pH, the increased release of plant-borne carbon 

sources, and the increasing capacity of plant mediated CH4 emission. 

N2O emissions from agricultural soils, representing approximately 5% of total global anthropogenic 

GHG emissions (WRI, 2014), are predominantly linked to inorganic and organic nitrogen fertilizer 

applications to arable upland systems (Davidson, 2000). Numerous studies report high CH4 but 

relatively low N2O emissions from flooded rice production (Linquist et al., 2012) because anaerobic 

conditions limit nitrate availability and strict anaerobiosis favours complete denitrification to nitrogen 

gas (N2) (Zou et al., 2007). 

Several parameters strongly influence CH4 emission including: 

• Soil, crop management (soil preparation and transplanting or direct seeded practice). 

• Residues use (incorporation and timing, burning, exporting for other purposes …) (Lu et al. 

2000; Le Mer et al., 2001; Wang et al. 2012 ; Coulon et al., 2016).  

• Water management with permanent flooding or alternate drying and wetting approach 

reducing the period of flooding (Cai et al., 1997; Wassmann et al., 2000; Tyagi et al., 2010; 

Coulon et al., 2016).  

• Texture and clay type protecting soil organic C from enzymatic attack (Le Mer et al., 2001).  

• Rice varietal differences in CH4 emission of almost 500 % have been reported. Root exudation, 

which produces organic substrates directly or indirectly utilized for CH4 production, varies 

qualitatively and quantitatively with rice varieties (Ladha et al., 1987; Mayer and Conrad, 

1990).  

In addition, open-burning of straw is a common practice in Vietnam and, thus, responsible of marked 

GHG emissions. It is reported that the Mekong Delta yields ∼ 20 Mt of paddy and an estimated 24 Mt 

of dry straw (Hong Van et al. 2014) annually. Streets (2003) reported that ∼ 6.1 Mt of crop residues is 

burned annually on-field in Vietnam which ranges as the sixth largest amount in Asia. In the Mekong 



11 

 

delta, in one triple rice cropping system, most of the rice straw harvested during the dry season is 

burned on-field. By contrast, the straw harvested during the rainy season is removed from paddies and 

utilized for straw mushroom cultivation. Then, this biomass is sun-dried and burned to remove the 

mushroom beds and to sell the ash. Consequently, 23% of the total aboveground straw biomass was 

burned annually in the triple rice cropping system (Hong Van et al. 2014). On-field burning of rice straw 

is commonly practiced in intensive rice production systems when there is a short time to prepare the 

field for the next crop. This situation mainly occurs between the spring and the summer rice cycles in 

most of the coastal provinces of Vietnam generating negative environmental and societal (air quality, 

and higher occurrence of breathing diseases) impacts. Rice cropping patterns (2 or 3 rice cycles) and 

the nature of rice harvesting (combine harvester or by hands and threshing on the side of the fields) 

have a strong incidence on open-burning and GHG emissions. With the increasing use of combine 

harvesters the threshed straw is (poorly) scattered on the soil surface and remains in rows. When 

harvested by hands the rice straws (after threshing) is piled in a stack for burning or used for mushroom 

cultivation and then burnt later on. Arai et al. (2015), conducting and assessment of GHG emissions 

from rice straw burning in a triple rice cropping system in the Mekong Delta, reported that the total 

GHG emissions amounted to 1688 g CO2-eq. kg dry straw−1. This result is in accordance with the study 

conducted by Gadde et al. (2009) in Thailand, Philippines and India, but is significantly higher than 

results reported from Japan (Miura and Kanno 1997). In addition, higher moisture content during 

open-burning (mainly the case during the transition spring – summer rice cycle) inhibits N2O emissions 

but enhances CO, CH4 and non-methane volatile organic carbon (NMVOC) when compared with lower 

moisture content of the rice straw.  

The figure 8 presents the carbon footprint of rice with field emissions representing 62% to 73% of the 

total.   

 

Figure 8: The carbon footprint of rice, from Vidal et al., 2016 (COSTEA) 
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Climate smart rice cropping systems 

 

The dissemination of climate-smart rice cropping systems requires a close match between the water 

needs of rice during his cycle, the efficiency of the irrigation network to provide water when needed 

and of the drainage system to remove any excess of water. That means that different scenarios should 

be designed and assessed taking into account the designs of the irrigation/drainage scheme, its 

efficiency, the climatic variability (rainfall and sum of temperature) of the different seasons (spring, 

summer, autumn and winter), and its impacts on the growth stages of rice (delay in the winter 

impacting the land preparation and sowing of the summer/autumn cycle). To be consistent with water 

regulations between water users and operation of the water networks (pumping, gravitation), the 

analysis should be done at the hydraulic frame scale. This will allow to arrange cropping systems 

capable to fit with varying capacities of irrigation and drainage at schemes functionnal unit level. 

In the following paragraphs the distinction is made between thematic adjustments (alternate wetting 

and drying/AWD; mid-season drainage/MSD; rice genetic adaptation to submersion, salinization, 

drought …) and systemic approaches; systemic approaches with Sustainable Rice Intensification (SRI), 

Conservation Agriculture (CA) and direct seeding mulch-based cropping (DMC) systems are principles-

based and thus more flexible than thematic/recipes-based.  

A water saving tactic and CH4 emission reduction: the alternate wetting and drying 

Irrigated rice is not only the largest source of CH4, but also the most promising target for mitigating 

CH4 emissions from rice (Wassmann et al., 2000). Aeration of the paddy field can reduce methane 

emissions and at the same time save water. 

More efficient water management practices are needed so that rice production levels can still be 

maintained or increased even with the use of less irrigation water. Different forms of water saving 

techniques as alternate wetting and drying (AWD) and midseason drainage (MSD) have been 

developed, assessed and disseminated to reduce CH4 emissions. AWD has principally been promoted 

in Asia, with the most widespread adoption to date occurring in Bangladesh, Philippines, and Vietnam 

(Lampayan et al., 2015) in An Giang Province (study from 2009 to 2011). 

AWD is an irrigation technique where intermittent periods of submergence occurred during the 

growing stages of rice. This is in contrast to the traditional irrigation practice of continuous flooding. 

This means that the rice fields are not kept continuously submerged but are allowed to dry 

intermittently during the rice growing stage. This approach, reducing the water amount with drying 

periods, reduces CH4 emission and thus contributes positively to the mitigation of climate change. With 

the exception of SRI (System of Rice Intensification/SRI) which is based on transplanting, most of the 

AWD approaches are based on rice sowing on ‘dry soil’ reducing of about 2 to 3 weeks the field 

submergence. Depending of the country the practice is based on different AWD periods. For example, 

in China, South Korea and Japan only one drying period is considered from 5 to 10 days. By contrast, 

in the Philippines several AWD periods are conducted from 20 days after sowing to 15 days before 

flowering. Farmers monitor the depth of the water table using a perforated water tube that is inserted 

into the soil (Figure 9).  
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Figure 9: from Vidal et al., 2016. Atelier de travail COSTEA sur la riziculture et le changement 

climatique Montpellier, 9/6/2016 

The practice involves draining the field until the water level reaches 15 cm below the soil surface after 

which the field is re-flooded to a depth of around 5 cm. The threshold of water at a 15 cm level below 

soil surface will not cause any yield decline because the roots will still be able to capture water from 

the saturated soils (Lampayan et al., 2009). In Vietnam, farmers (An Giang Province) adopting AWD 

reported lower labor cost than non-AWD adopters; irrigation frequency was also lower for the AWD 

adopters. The increase in net income (by 26%) was attributed to increased rice yield that was partly 

due to reduced lodging.  

AWD of rice paddy, has been promoted as a strategy to decrease irrigation water use and reduce GHG 

emissions from rice cultivation while maintaining or improving yields (Richards and Sander, 2014). 

Because periodic aeration of the soil inhibits CH4-producing bacteria, AWD can reduce CH4 emissions 

and, thus, has a proven potential to mitigate methane emission.  

Various studies on GHG emissions under AWD and other water-saving strategies have been conducted 

to quantify the mitigation potential of those water management strategies. The capability of AWD to 

reduce CH4 emissions is also reflected in the IPCC methodology (IPCC, 2006) and it is presumed that 

AWD reduces CH4 emissions by 48% compared to continuous flooding of rice fields. Moreover, a single 

aeration of the field (midseason drainage), reduces CH4 by 40% (IPCC, 2006). In addition, several 

studies (Pandey et al., 2014; Xu et al., 2015) reported a mitigation potential of AWD that ranges from 

48 to 93%. 

However, AWD may also have tradeoffs (Ahn et al., 2014; Wang et al., 2012) in terms of higher 

emissions of nitrous oxide (N2O), a GHG even more potent than CH4 with a GWP of 298 (IPCC, 2006). 

Under water saving strategies, N2O emissions tend to increase due to increased nitrification and 

denitrification activities with the soil conditions constantly changing between anaerobic and aerobic 

and related changes in the redox potential. However, in most cases this trade-off does not eliminate 
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the overall reduction in global warming potential (GWP) associated with AWD (Linquist et al., 2015; 

Pandey et al., 2014; Xu et al., 2015). In addition, LaHue et al. (2016) observed that AWD reduced 

growing season CH4 emissions by 60–87% while maintaining low annual N2O emissions (average = 0.38 

kg N2O–N ha-1); N2O emissions accounted for <15% of the annual global warming potential1 (GWP) in 

all treatments tested. The AWD treatments reduced annual GWP by 57–74% and growing season yield-

scaled GWP by 59–88%. Other studies suggested that the incremental N2O emission through AWD is 

insignificant as long as the N fertilization remains within a reasonable range. 

Addition of fertilizer N influences CH4 emission through enhanced CH4 oxidation, increased transport 

for CH4 and more carbon substrate for CH4 production (Schimel, 2000). Linquist et al. (2012) 

emphasized that the impact of N fertilizer on growing season CH4 emissions are N rate-dependent. 

They also found that deep placement or banding of fertilizer N in continuously flooded rice systems 

reduced CH4 emissions by 40%. Deep placement of N can also lead to increased N use-efficiency, 

minimizing N losses as the ammonium is protected from nitrification/denitrification in anaerobic soil 

layers (Savant and Stangel, 1990). 

The following figure represents the decrease in CH4 emission under AWD management when 

compared with conventional irrigation pattern, and the yields for a range of rice cultivars. 

Figure 10: Methane mitigation potential of AWD (Philipines) and water management; from Vidal et al., 

2016 (COSTEA) 

In these water-saving technologies, the main constraints are related to the water management. AWD 

approach can be implemented only if the irrigation can be fully managed and water available when 

needed. It will also depend of the efficiency of the drainage system during the wet season as water 

should be drained out in time. Promoting water-saving technologies implies that the characteristics of 

the irrigation system allow changes in water distribution rules and that the drainage capacity is 

efficient. Thus, and before targeting the AWD approach, it is essential to identify within the irrigation 

scheme where these conditions are available during the dry and rainy seasons based on the results of 

the analysis of the operation of the hydraulic frame. On this basis, on-farm demonstrations would 

ensure that the constraints of monitoring related to these practices are compatible with agricultural 

practices (level of mechanization) and the availability of labor. Such approach would ensure the 

conditions of upscaling of proposed technologies. In addition, the adoption of AWD depends on the 

incentive for the farmer that is directly linked to the irrigation system. In a pump system where farmers 

can achieve direct financial savings due to reduced diesel use for pumping under AWD, it is easily 

adopted and properly implemented. In irrigation systems where farmers pay seasonal fees 

independent of the actual water usage, farmers could be reluctant to use water-saving techniques and 

it will imply additional labor inputs (Lampayan et al., 2015). 

                                                           
1 Global warming potential (GWP) is a relative measure of how much heat a greenhouse gas traps in the atmosphere. GWP is expressed as a 

factor of carbon dioxide. 
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Rice straw management 

The use of combine harvester increases drastically to offset the scarcity of labor force. This technology 

has a direct impact on straw management and thus GHG emissions. Combine harvesters that are 

widely used in the region (Kubota DC60 and DC70) are not equipped with crushers and straw spreaders 

leaving after harvest windrows that are valued in part (livestock, mushroom production, energy) but 

mostly burned prior land preparation (ploughing, harrowing or rotary tiller) for the summer cycle. The 

first option would be to use straw spreader to allow a homogeneous distribution of rice straw on the 

soil surface to avoid the massive open-burning. Another option is to use straw baling machines 

(available in southern Vietnam, figure 11) to export the straw for other purposes (mushroom 

cultivation, livestock and energy).  

Figure 11: Straw baling machine available in the Mekong Delta (Galan, Japanese brand, Binh Chanh, 

province de Hô Chi Minh) 

Managing rice straw will allow diversifying the use of agricultural implements for the field preparation. 

Given the recent changes in the use of agricultural machinery it is useful to test a wider range of 

implements that should bring flexibility especially while initiating a transition toward direct seeding 

mulch-based cropping (DMC) systems. For instance, the uses of cultivator (Fig. 12) or roller (Fig. 13) 

exhibit a higher workable capacity when compared with conventional plough-based tillage and/or the 

use of rotary tiller. With the use of roller or cultivator rice straws will be incorporated in the top soil 

layer. Based on water management rice sowing can then be done by broadcasting dry or pre-

germinated rice seeds. Seed broadcaster (Fig. 22) can be used with cultivator and roller allowing in one 

pass the field preparation and the rice sowing. 

 

 
 

Figure 12: Cultivator for land preparation 
 

Figure 13: Use of roller for a fast land 

preparation between 2 rice cycles. Rice straws 

are buried on the top soil 

 

AWD, new management of rice straw, introduction of new tools to prepare soil can be considered as 

example of thematic modifications of the practiced cropping system. Thematic change plays on the 

modification of a sole element; for instance, variety, fertilizer type or dose, seeding density and 

pattern, pesticides active ingredient … constitute classical thematic pathways to improve performance 

of existing systems. Regarding the adaptation to climate change, several genetic programs head for 
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rice adaptation to environment alteration, working on the development of tolerance to salt injury, to 

submergence by flood events or to drought and temporal dry spells. 

However, if we intend to adapt rice farming systems to climate changes and to mitigate GHG the whole 

management of the soil, water and biodiversity should be considered. Thematic adjustment based only 

on water control, new rice varieties adapted to submergence and/or salt will not solve the problems 

on the long run. It is also largely reported that land use intensification is characterized by a high 

environmental footprint (soil and biodiversity erosion) and increasing debts as a result of the high 

capital requirement of intensive cropping practices. The current negative impacts on natural resources 

(soil, water and plant diversity) and decreasing trend of productivity call for pronounced holistic 

changes of the practices. It is widely reported that marginal modifications (thematic, e.g. fertilizer, 

variety, pesticides) are not sufficient because they do not address the intrinsic non-sustainable 

patterns of the current practices and often introduce an economic risk that cannot be taken on by 

farmers. 

Systemic changes do not consist in modifying several elements of a pre-existing system in the 

meantime. They are more principles-based than attached to specific prescriptions like thematic 

adjustments; it means that new practices converge to mobilize processes that sustain the cropping 

systems.  

• In SRI, practices design is focusing first on rice ecophysiology and the maximization of the 

number of productive tillers. 

• In Conservation Agriculture (CA), cropping systems are built around the organization, across 

crops – cover crops successions and associations, of the largest and most diversified flow of 

organic matter inputs on soil surface with the aim to generate a soil organic carbon-integrated 

fertility management. Thus, systemic changes are flexible and keep evolving in time within 

their essential framework of principles.  

SRI, a cropping system change driven by the rice crop management 

In its first development in Madagascar, SRI was introduced to farmers under a single message: practice, 

as early as possible, of transplanting from nursery to field (ideally between 8 and 15 days after 

emergence) at large spacing between plants (up to 0,4 x 0,4 m) in order to limit the biotic constraints 

and enhance the tillering capacity. Obviously, this apparently simple technical message pairs with 

directly induced necessities: transplant a seedling of less than 10 cm high requires a perfect land 

levelling combined with a smart water management to avoid submergence; transplant very small 

plants at large spacing means a cautious weeds management (with tools contributing to soil aeration) 

during the first 50 days of the crops. At first, SRI was based on rice crop management (early 

transplanting, large spacing, water management) with a 

progressive aggregation of an integrated soil fertility 

management through the use of manure and compost, AWD 

exclusively at the beginning of the rice cycle, and an 

integrated pest management.  

However, SRI does not offer option for the management of the cropping systems (i.e., crop 

diversification, integration with animal husbandry) beyond the optimization of biomass flows at farm 

level (use of manure and compost). Rotation, crop diversification, intensification of biomass 

production at the field level (ecological intensification based on an increase of biomass-C inputs: 

quantity and quality of the biomass produced and restituted to the system), and adaptations to 

restrictions on water access are not considered. 

The fact remains that SRI allows changing the perceptions of producers, organized around simple 

messages. It is part of a systemic change when compared with the patterns and rationale of the green 

revolution. In addition, SRI, including alternate drying and wetting period, decreases CH4 emissions 

SRI should be considered as a 

systemic change primarily based 

on rice crop management. 
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when compared with conventional management based on transplanting under irrigation management 

(Ly et al., 2013).    

Conservation Agriculture (CA), innovative cropping systems based on soil and plant 

diversity management 

Before presenting CA, it appears important to clarify the terminology when it comes about “direct 

seeding” in rice production. 

Direct seeded and no-till rice  

Direct Seeding (DS) of rice is a worldwide-spread expression that covers various technical management 

of rice crop implementation: 

• In region where transplanting is the dominant practice, DS means that rice has been directly 

sown in the field, skipping the nursery stage. Soil is generally tilled, and rice is sown in line or 

by seeds broadcasting. 

• In region, generally with more advanced mechanization, where rice is sown with seeders, DS 

means that no soil tillage has been operated prior to rice sowing. However, a soil preparation 

is regularly done along the crops sequence, usually built upon an annual succession including 

one rice cycle a year. 

For the latest group, we can cite numerous examples of cropping patterns that include DS or no-till 

rice implementation: 

• In temperate/sub-tropical regions of India, China, Pakistan, more than 25 million ha, are 

managed under a rice-winter cereal annual succession where wheat is direct seeded on rice 

straws, but soil preparation usually precedes rice implementation. 

• In the inter-Andean valleys of Colombia (Tolima, Huila) with a bimodal equatorial rains regime, 

producers often skip a costly soil preparation and directly sow rice in the rice stubbles 

(dominant rice mono-cropping). 

• In southern subtropical regions of Brazil (Santa Catarina and Rio Grande do Sul), rice is direct 

seeded on a cover of ryegrass that has been sown in fall season after soil and field (temporary 

canal and drainage system) preparation. In spring, the ryegrass cover is desiccated by herbicide 

application and rice is directly sown in the mulch. 

In this type of cropping system, DS is more motivated by production cost reduction and time saving for 

crops implementation than backed on an agronomic rationale of soil fertility management. While CA 

covers about 150 million ha in rain-fed upland agro-ecosystems across the world, there are very few 

irrigated rice production systems combining permanent NT with the inclusion of permanent soil cover 

by crops residues and cover-crop management. Among known example we can cite:  

• The historical and pioneer experience of Matsubara Fukuoka (1978) in Japan based on rice – 

barley succession managed on a living cover crop of clover.  

• In India, the contemporary development of the Saguna approach based on conservation 

agriculture developed on permanent bed management. 

• Research and development works developed by CIRAD and its partners in Madagascar, 

Cambodia, Colombia and more lately in Ivory Coast.  

In the following paragraphs, we consider the terms of Conservation Agriculture (CA) and Direct seeding 

Mulch based Cropping system (DMC) as equivalent, the second having the advantage to be more 

explicit from a technical point of view. 
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CA principles and agro-ecological rationale 

Since more than 3 decades, CIRAD, and the research unit AIDA/CSIA, are involved in the design and 

assessment of diversified Conservation Agriculture and Direct Seeding Mulch-based Cropping (DMC) 

systems (Séguy et al. 1998; Séguy et al., 2006; Husson et al., 2013). They are based on 3 technical 

principles with: (i) minimum soil disturbance, (ii) permanent soil protection with plant cover and (iii) 

species diversification based on crops and cover crops succession and/or association. These principles 

trigger ecological processes particularly with a litter system, a continuous flow of fresh organic matter, 

driving soil biota diversity and functionality (Lienhard et al., 2013), soil structure and soil organic C and 

N accumulation (Tivet et al., 2013) contributing to the resilience of the system. Biological processes 

and systems properties are enhanced and extended by multifunctional cover crops and a higher degree 

of crops diversification (Husson et al., 2013). 

 

Figure 14: Technical principles of direct seeding mulch-based cropping systems 

The primary goal is to build a 

permanent flow of carbon from above 

and belowground biomass to improve 

all compartments (physical, chemical 

and biological) of the soil’s fertility. 

Thus, DMC systems constitute a 

biological integrated way to manage 

soil’s fertility when classical approach 

tends to manage more independently 

each of these compartments: soil tillage to improve physical conditions (and partially weeds), fertilizers 

(inorganic and organic) to first improve nutrients’ availability, herbicides and fungicides to control 

weeds and diseases. Thus, the strategy is to restore and build a living soil using a large diversity of 

plants over time and space at the field and landscape levels, optimizing nutrient availability, minimizing 

losses of water and nutrients, enhancing soil functional biodiversity, and enhancing beneficial 

biological interactions and synergies. 

Under DMC, plant diversity is the engine that drives 

soil-crop interactions and enhances ecosystem 

services (regulation and provision). The introduction 

of cover crops leads to better utilization of available 

natural resources, maximization of biomass 

production and higher organic restitutions to the soil 
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Soil-plant relationship between ‘conventional’ and DMC management  

The following diagram (Boulakia et al., 2013) highlights the changes in the soil-plants relationship 

progressively induced by the introduction of DMC based management in lowland rice agro-

ecosystems. 

 

Figure 15: Changes in the soil-plants relationship induced by DMC management in lowland rice agro-

ecosystems (From Boulakia et al., 2013) 

Rice cropping systems should shift from a non-sustainable agricultural system where the biodiversity 

has collapsed and which is exclusively “perfused” by fossil fuel leading to massive use of chemical 

inputs to a rice farming system built on biological processes. DMC systems generate drastic changes of 

soil/plants/microorganisms interactions with diverse nutrients conserving strategies (cycling of 

nutrients through biomass growth-decomposition successions, increased storage capacities of 

nutrients into soil organic C …), requiring less amount of water from the irrigation system thanks to 

higher soil water infiltration and retention, integrated pests and diseases management. These changes 

lead to the progressive elaboration of a complex agro-ecosystem “equipped” with its self-regulation 

capacities that favors better plant growth.  

At the field level, DMC systems restore progressively the biological processes that allow the gradual 

substitution of inorganic fertilizer by activating organo-biological fertility. Improved soil profiles 

combined with the presence of a permanent litter on the top soil leads to better efficiency of rainwater 

and irrigation, offering less anoxic conditions, reducing CH4 emissions and accumulation of soil organic 

C. In addition, these systems open ways of diversification with the use of relay and/or cover crops 

(secondary crops, fodder sources). 
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DMC and soil fertility management 

The following figures are based on an experiment conducted in Cambodia (Kampong Thom province, 

Stung Chinit irrigation scheme) on a sandy podzolic soil (80% sand, < 1% or soil organic matter on 0-10 

cm depth) (Leng et al., forthcoming). DMC rice cropping systems are based on one or two rice cycle 

with the use of legume cover crops after summer rice. Rice cropping systems in Vietnam and Cambodia 

are extremely different and cannot be compared but this example illustrates the diversification process 

with fodder legumes after rice. This fodder source can be partially used for livestock while contributing 

to an organo-biological improvement of soil fertility through a DMC management. 

  

Figure 16: Cover/relay crops of Stylosanthes 

guianensis and Centrosema pascuorum (April 

2015, dry season, no irrigation) on sandy 

podzolic soils. Both species (legume, fodder) 

were broadcasted prior harvesting (early Nov). 

 Figure 17: Permanent cover of the top soil with 

the mulch of Stylosanthes guianensis and 

Centrosema pascuorum, continuous flow of fresh 

organic matter (8 t dry matter/ha; May 2015). 

  

Figure 18: Changes in soil organic C stocks under 

‘native vegetation’ (right), conventional plough-

based tillage (CT, middle) and DMC (left). 

Figure 19: Jasmin rice (Phka Rumdoul) direct 

seeded on mulch of Stylosanthes guianensis and 

Centrosema pascuorum + rice straw (June 2015).  
 

Figure 20: Changes in the color of the soil layer 

under plough-based management (CT, left) and 

DMC (right) after 4 years (double rice cycle – 

spring and summer - and use of cover crops 

under DMC) 

 

[0 – 10 cm] CT DMC 

SOC (Mg. ha-1) 8,2 10,1 

Labile-C (kg.ha-1) 231 317 

Total N (Mg.ha-1) 0,85 1,10 

N miner. (kg.ha-1) 170 215 

Table 1: changes in total soil organic C (SOC), 

N, labile-C pool and mineralizable N between 

CT and DMC (Leng et al. , forthcoming) 
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After 4 years on a sandy podzolic soil (80% sand), soil organic C, labile-C pool, N and mineralizable N 

stocks, and soil microbial respiration increased under DMC management when compared with CT.  SOC 

and N stocks increased by 23% and 30% under DMC in 0-10 cm depth, respectively, contributing 

significantly to an increase in nutrients stocks under an organic form (no leaching). With reduced 

reliance on external N inputs under DMC, due to a continuous flow of fresh organic C and the use of 

legumes cover crops, emissions per ha can also be reduced. 

Generally, nitrogen applied per rice cycle is not always used efficiently and/or available N exceeds plant 

requirements. The surplus N is particularly susceptible to emission of N2O and runoff. Consequently, 

improving N use efficiency contributes to reduce N2O emissions and indirectly reduce GHG emissions 

from N fertilizer manufacture. In a secondary process, once efficient and attractive systems are 

designed, thematic adjustments should also be considered, particularly avoiding N supplies exceeding 

the immediate plant requirements, e.g. by fractioning the fertilizers applications, using slow- or 

controlled-release fertilizer forms or nitrification inhibitors (which slow the microbial processes leading 

to N2O formation), among others practices (balanced supply of nitrate and ammoniacal nitrogen). 

Diversification and systems flexibility 

The adoption of DMC opens ways to an integrated management system where the main investments 

will be allocated to the design of a diversity of cropping systems (integrating crops diversification, 

integration with animal husbandry and producing additional fodder sources) for different topographic 

positions and water regimes (rainfed lowland exposed or not to floods, irrigation schemes with 

gradient of water control -irrigation/drainage- conditions) and offers (climatic variations), less costly 

in terms of investment and maintenance (controlling runoff, reducing lateral flows). 

Once transition toward DMC-based management achieved, systems are based on “elementary brick” 

composed of “cover-crop/crop” successions. These “bricks” are designed (crop and cover crop species, 

calendar, modalities of association/ relay, intensification level, tools …) according to the bio-physical 

and socio-economic contexts. But their succession in time will depend on farmers’ decisions ruled by 

production objectives and decisions making integrating price prediction, climate trends forecast 

(Niño/Niña) or anticipated schemes’ irrigation capacities. 

For instance, once a cover-crop is properly established, various decisions could be taken at the onset 

of the rainy season, according to production goals and environment conditions: 

• Keep the cover to maximize soils improvement (i.e., investment in soil fertility recovery while 

departing from severely degraded situation) or exploit it has a fodder source for livestock with 

multiple trades-offs options between these uses. 

• Opt for sowing: 

o Rain-fed crops with or without possibility to supply punctual irrigations, 

o Irrigated crops (crops duration conditioning the water consumption). 

In addition, when practiced in irrigation scheme with full water control, DMC systems are 

systematically managed with AWD approach combined with the improved soil storage capacity and 

the mulch limiting evaporation, contributing to higher water-use efficiency. 

Diversification of double rice cropping systems with non-rice crops and cover/relay crops 

Most of the double rice cropping systems of the Mekong River Delta and of the coastal plains are driven 

by the extent and occurrence of flood in the autumn (from September to early December). 

Diversification with cover/relay crops and particularly legumes should be tested after rice harvesting 

at the end of August and early September. Other options could be based on a ratoon (i.e., spring rice 

reshooting) based production in the summer in associations with cover crops. The use of the 

cover/relay crops are threefold : (i) increasing the diversification after rice with high quality fodder 

sources, (ii) improving the soil fertility through the biomass-C inputs (above and belowground) with N-
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fixing legumes, and (iii) decreasing, through an integrated pest management strategy, weeds and 

diseases pressure. 

Several cover/relay crops can be tested alone or in association such as Centrosema pascuorum, 

Sesbania sp., Stylosanthes guianensis. Prior to the establishment of the spring cycle part of the 

cover/relay crops can be used as fodder sources using straw-balling machine available in southern 

Vietnam. This dynamic, with an increase of fodder sources, must be tested given the rise in cattle 

fattening, and dairy farms. The use of cover/relay crops gives also the opportunity to initiate DMC 

systems that can be split into 2 sub-groups: 

• System based on dead-cover in which cover crops are terminated by combination of physical 

and chemical means prior to rice sowing. 

• System based on alive cover-crop in which the cover is kept alive in association with the rice, in 

which competitions are controlled by irrigation and limited dose of herbicide. 

Based on the extent of flooding, water flow and drainage, double rice cropping systems with non-rice 

crops before the summer rice cycle should be considered under no-till management. Crops with higher 

add-value such as pulse crops, sesame, amaranths, chia (Silvia hispanica), among others, should also 

be tested. In each context of flood regimes and water control, a large variety of systems based on crops 

successions (rice and diversification one), cover crops species and its management type could be 

introduced and rapidly tuned and adjusted in close contacts with farmers, farmers organizations and 

extension services.  

In the meantime, diverse technologies can be used for the rice sowing. Rice can be direct-seeded 

through the biomass of cover/relay crops (previously desiccated or keep alive), using a no-till planter 

or dry rice seeds can be broadcasted on green mulch that will be mechanically controlled and 

terminated if needed. This latter system gives a higher flexibility and higher resources-use efficiency 

(lower production costs and energy use for sowing). 

   

 

Figure 21: Thick mulch of S. guianensis and C. 

pascuorum (sowing time) 

Figure 22: Broadcasting rice seed under no-till 

management 

  
Figure 23: Rice direct seeded through a thick 

mulch of S. guianenis and C. pascuorum 

(Kampong Thom) 

Figure 24: Jasmin rice broadcasted under DMC 

management, hydromorphic plains, no water 

control (Battambang) 
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Figure 25: Rice seed broadcasted on a green 

cover crops (mix of sorghum and sunnhemp, 

upland field) 

Figure 26: Rolling of the cover crops after rice 

seed broadcasting 

  
Figure 27: Emergence of rice on thick mulch of 

sorghum and sunnhemp  

Figure 28: Rice well established under DMC (no 

ploughing, no soil disturbance, full soil cover, 

diversification, no planter)   

In addition, the use of non-rice crops and cover/relay crops (legumes and others) will contribute to 

reducing the use of inorganic fertilizer and particularly urea that is also contributing to N2O and CH4 

emissions. The N use-efficiency should be improved by strengthening the organic soil fertility 

(increased concentrations of organic C & N, soil biological activity, use of legumes ...). As emphasized 

previously, these cropping systems should also embed AWD approach plus a wide diversity of rice 

varieties with a particular emphasis on aerobic rice, tolerance to blast and other fungi. The use of rice 

variety with polygenic traits (or several monogenic traits) to fungi diseases will largely contribute to 

reduce the use of fungicides that are one of the main pesticides used in the Mekong River Delta and in 

others major rice production regions. 

Systems flexibility, irrigations schemes management … and design 

As briefly introduced above, DMC enlarges flexibility in terms of crops choice (less anoxic soils’ 

conditions) and management modalities. This flexibility can be mobilized to design cropping systems 

addressing specific hydraulic and hydrologic contexts characterized along the year by water flow 

control (from a zero-control of rain-fed context, to partial or complete irrigation possibility), drainage 

capacity and flooding occurrence.  

The crop diversity based on the association, succession and rotation between irrigated or rain-fed 

crops with species – secondary grain or cover/fodder crops - able to grow on marginal rainfalls and/or 

soil’s water reserves could be spatialized at the scale of the irrigation scheme. This “aggregation” of 

crops based on collective arrangements could ease for instance the organization, in case of water 

shortage,  of seasonal water allocation between sectors, in advance split into irrigated or rain-fed / soil 

reserve regimes. It could also allow the development of fodder production and/or pasture 

management to serve better livestock integration.  

Thus it can be understood how DMC could be adapted to multiple socio-economic and bio-physical 

conditions. How, also, in contexts marked by environmental hazards, the creation of innovative, 

flexible and diverse systems could feed the emergence of new collective organizations in order to 
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optimize resource management through better integration between systems and schemes functioning 

and operations. 

In longer perspectives, we can imagine that the emergence of DMC based management associated to 

new ways to operate irrigation (i.e., AWD, contour lines designed vs planning, subterranean micro-

irrigation with dripper lines) will lead to conception of new scheme design. These new combinations 

should allow drastic improvement of water use efficiency and open new pathways to halt progressive 

soils’ salinization.  

Adaptation and mitigation options 

Interdependencies exist between adaptation and mitigation and there are benefits from considering 

adaptation and mitigation in concert. 

Adaptation Mitigation 

Diversified DMC 

Biomass-C inputs from non-rice crops and 

cover/relay, aerobic management  

Increasing soil biota abundance and diversity, 

improving nutrients cycling  

Crops diversification, buffering shocks, 

multiple options and possibility of choices 

Reducing production costs, increasing 

flexibility (no-till sowing or broadcasting) 

Increasing water (AWD, MSD) and nutrients-

use efficiency (fertilizer type, application rate 

and placement) 

C: soil organic C accumulation, increasing soil 

microbial communities and diversity, improving 

soil structure: from anoxic to aerobic soil 

profile 

CH4: reducing emissions 

N2O: emissions need to be assessed for 

contrasted rice cropping systems and time 

 

The Table 2 summarizes existing approaches that can integrate rice-based cropping systems design in 

response to climate change induced alterations of the environment. It emphasizes on a distinction 

between “thematic” components that can integrate pre-existing cropping systems and “systemic” 

approaches leading to a complete redesign of cropping –and even- farming systems.  

Alternative hydraulic infrastructures (nature-based solutions vs. hard engineering with dykes 

networks) (MDP, 2013; Ibanez et al., 2014; Chapman et al., 2016), water-saving strategies (Bouman et 

al., 2007), soil organic C and soil biota management and thematic adjustments (combining a large 

range of tools: rice varieties, organic and inorganic fertilizers and pesticides) should be designed 

through a systemic lens based on a close co-design process between infrastructures, water 

management and diversified rice cropping systems. These latter should restore soil life in order to re-

establish and enhance the multiple soil-based biological processes (C and N cycling, soil structure, 

nutrient cycling, soil biota and water). 

Assessing GHG 

As emphasized by Smith et al. (2007) a practice affect more than one gas, by more than one 

mechanism, sometimes in opposite ways, so the net benefit depends on the combined effects on all 

gases. In addition, several studies, including those by Six et al. (2004) and Marland et al. (2003), 

observed that temporal pattern of influence may vary among practices or among gases for a given 

practice; some emissions are reduced indefinitely, other reductions are temporary (Six et al., 2004; 

Marland et al., 2003). The effect of DMC systems on N2O emissions need to be evaluated. Chapuis-

Lardy et al. (2007) emphasized that N2O can be consumed by denitrifiers but probably also by nitrifiers, 

resulting on negative fluxes of N2O at least temporary. Quantifying and assessing the magnitude of the 
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impacts of carbon and GHG emissions on agro-ecosystems could facilitate a potential solution to 

mitigate climate change and further environmental issues, and be helpful in raising awareness and 

decision-making concerning environment-friendly technological development for the general public 

and policy makers. Analytical platform at different scales (i.e., field experiments, on-farm 

demonstrations, and pilot extension network) should be established integrating different topographic 

positions, different water management and a diversity of innovative cropping systems. This design 

should be used to assess the performances of the cropping system (agronomic, labor inputs, costs and 

profitability), the changes in soil fertility with an emphasis on soil organic C and N, nutrients cycling, 

water use efficiency and GHG (CH4, N2O and CO2). 
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Table 2. “Thematic” and “systemic” approaches for Climate Smart Rice systems design and potential contribution to the adaptation / mitigation of climate 

change  

CO2 CH4 N2O

Thematic  - Level crops management

Variety 

development
var. with limited CH4 emission

selection / CC-induced 

alteration (resistance to 

drought, tolerance to 

submergence, tolerance to 

salinization …) 

on-going breeding program

prospective for application 

rapid for salt tolerance

potential 

impact
-?- -?-

Nitrogen 

management

interdependance N and SOC 

dynamics

Balance Ammonium / Nitrate 

as N-source, fractionation, 

nitrification inhib., dose …

research to validate impact / 

analyze pathways - high 

transferability

potential 

impact
-?- -?-

Biochar

potential 

impact

AWD reduction emission reduced water consumption
operational - high 

transferability

potential 

impact
+++ +

Straw 

management

reduction emission (no burn, 

positive SOC balance)

operational - high 

transferability, via livestock 

integration

potential 

impact
+++

Systemic  - level cropping / farming systems management

SRI to be evaluated

reduction emission via 

integration of AWD in the 

system

to be evaluated / likely to be 

significant with increased rely 

on O.M. based fertilization

reduced water consumption

operational -transferability 

function of the context-, based 

on simple message

potential 

impact
-?- +++ -?- +

CA
strong stimulation of positive 

SOC balance

water and soil management 

lead to aerobic condition

to be evaluated / likely to be 

significant with increased rely 

on O.M. based fertilization

Context-based design, multi-

functionnality of cover-c.

methodology and technique 

references for systems design 

and up-scale (initiated by R&D 

approach)

potential 

impact
+++ +++ -?- +++

Mitigation
Adaptation s tate of art
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Climate Smart Rice production in response to CC in Mekong Delta 

Agrochemical-based Green Revolution in front of CC challenges 

Rice farming in Vietnam largely relies on the foundations of the agrochemical-based green revolution 

(Nguyen Huu Dung and Tran Thi Thanh Dung, 2003; Pingali et al., 1997). It is undeniable that intensive 

rice farming has provided huge productivity gains under conditions of intensive resource use and a 

controlled, predictable environment.  

In brief, the green revolution thrived on high-yielding monoculture crops and based on a close 

interaction of means of production as irrigation, mineral fertilizers and pesticides with two cross-links: 

• Irrigation, water control, and engineered infrastructures are the safeguard of the high use 

efficiency of the chemical and rice genetic investments. 

• In the same time, the profitability of the irrigation scheme is largely related to the level of 

agricultural intensification with massive use of inorganic fertilizers, pesticides and high yielding 

rice varieties. 

It is however essential to recognize the inherent limits and contradictions of agrochemical-based rice 

production. The green revolution exhibits intrinsic limits with (i) a massive use of mineral fertilizers 

and pesticides generating water and soil pollution but also health concern from the users and 

consumers (Chau et al., 2015), and (ii) a marked soil fertility depletion (i.e., soil organic matter, soil 

biota activity among others) and the generation of specific cultivation characteristics as compaction 

and anoxic soil ecosystem largely responsible of CH4 emissions. Regarding most intensive area, mineral 

fertilizers applications reach up to 800-900 kg/ha on each rice cycle and pesticides (i.e., herbicides, 

fungicides and insecticides combined) up to 12-15 kg/ha of active ingredient. 

The process of agricultural intensification has increased the systemic dependency of smallholder 

farmers on fossil fuels for both energy-intensive production and agrochemical inputs (Fortier and Thi 

Thu Trang, 2013). By relying on water-controlled infrastructure, agro-chemical inputs, rice genetic and 

mechanization (land preparation: ploughing, harrowing, rotary tiller), rice farming is trapped into a 

constant need for maintenance and thematic adjustments to environmental attributes that are 

becoming unstable, and changing at an accelerating rate. Engineered landscapes that have been 

reclaimed from the flood plains and wetlands of the Mekong Delta are increasingly threatened by sea 

level rise, unexpected river flows and aquifer depletion (Mekong River Commission, 2010). As the 

resulting floods and salinization become more frequent, intense and damaging, the Delta’s extensive 

hydraulic systems require increasing levels of maintenance, while becoming less and less effective. It 

has also to be noted that current rice farming systems have driven an erosion of crop diversity, a 

depletion of soil fertility and of soil biota diversity that directly threaten the resilience of the system. 

In addition, the nature and amount of pesticides applied increased rapidly from the end of the 1980s 

to 2010s (Ut, 2002). While 77 different active ingredients (a.i.) were legally applied in 1991, nearly 300 

a.i. were in use in 2010 (Vien and Hoi, 2009; MARD, 2010). As a result, the amount of imported 

pesticides increased from 20,300 to 72,560 t (Huan, 2005; MARD, 2010). Van Toan et al. (2013) 

observed residues (12 out of 15 a.i. monitored) of currently used pesticides (i.e., buprofezin, butachlor, 

cypermethrin, difenozonazole, α-endosulfan, β-endosulfan, endosulfan-sulfate, fenobucarb, fipronil, 

hexaconazole, isoprothiolane, pretilachlor, profenofos, propanil, and propiconazole) in considerable 

concentrations in water, soils, and sediments of fields, field ditches and canals in the Mekong delta. 

These environments are the most exposed to potential pesticide pollution due to their proximity to 

application places. However, these results also show that this pollution partially persists and reaches 

larger canals which are used by people for drinking and other domestic purposes (7 out of the 15 

studied pesticides in some samples of drinking water) as well as for aquaculture production. A recent 

study from Chau et al. (2015) confirmed these previous findings and observed that all investigated 

water sources in the Vietnamese Mekong Delta have been shown to be contaminated by pesticides. 
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Irrigated rice production is facing systemic problems. In terms of cropping systems, these constraints 

are inherent to the soil and crop management that are based on the principles of the green revolution: 

depletion of the soil fertility, use of inorganic fertilizers to maintain the soil chemical fertility, high 

weeds pressure and high dependence to the herbicides. Therefore, these investments on irrigation 

scheme are capital intensive generating a high sensitivity to externals shocks (increasing production 

costs, decreasing price …). In addition, these systems are more and more criticized for their local (soil 

fertility depletion, high dependence to inorganic fertilizers and pesticides, health of farmers …) and 

global (GHG) environmental footprint, and demands of the society to have access to better nutritious 

food. 

The magnitude and pace of climate change will depend partly on the uncertain unfolding of biophysical 

changes, and partly on adaptation and mitigation measures which national policy-makers, donors, 

agro-industries and farmers will (or will not) undertake. With over 3,200 km of coastline, two major 

deltas (Mekong and Red river deltas), monsoon rains and strong typhoons, Vietnam is exposed to sea-

level rise, coastal and hillside erosion, floods, inundations, salinization, cold spells, and droughts which 

subject local ecosystems to increasingly severe stress (Nguyen Van Viet, 2011; Yu et al., 2010). Carew-

Reid (2008) reports that a SLR of 1-m by 2100 would submerge up to 31% of the Mekong Delta.  

The floods cause serious problems for rice and other crops because of the poor or non-existent 

drainage and the topography of the land prevents fast water movement to drain flooded fields. 

Flooding is therefore considered a major challenge for rice production in some coastal provinces of 

Vietnam (Ha Tinh province for example with the severe flood in 2010). Salt intrusion is also one of the 

main concerns of the impacts of climate changes in the coastal and delta regions. In early 2016, the 

Mekong Delta has been hit by a double blow of prolonged drought and salt intrusion due to the impacts 

of El-Nino. The region delta has seen the water level in Mekong River continuously decrease during 

several recent years. The level fell by 3 m from 2000 to 2015. The underground water source in the 

region has also dropped at an annual rate of 40 cm (Mekong Delta struggling with drought, salt 

intrusion, Vietnam Pictorial, 29/03/2016). 

Climate change repercussions and damages to rice agro-ecosystems might be severer on the large 

extent of acid sulfate soil in both deltas. Consequences of climate changes, with the alternate period 

of drought, flood and possible saline intrusions on such soil type, regulated by redox driven 

biogeochemical processes remain difficult to predict (Bush et al., 2010) ; prolong drought periods 

would trigger oxidation and acidifying processes while inundation will allow a return to reductive and 

neutralizing trends.    

Over the last thirty years, rice production orientations have been able to meet the growing demand 

for food due to an increase on rice productivity growth. In the last decades, while improved cultivars 

(including hybrids), and new generation of pesticides have been released, the rate of growth in yields 

has been stagnating. In addition, the adverse weather conditions in the recent years have also 

contributed to emphasize the sensitivity of rice farming to climate variability and climate changes in 

the main basins of production of Vietnam. 

The green revolution has in fine a low capacity to adapt and to mitigate the effects of climate variability 

and climate changes. A range of constraints can be described with higher flood and/or drought, 

depleted soil fertility, soil compaction and anoxic soil profile that do not allow crop diversification 

without a massive use of inputs and an investment in land preparation (ploughing, hilling/ridging, bed 

planting…).  

The time has come to rethink rice farming systems that ensure that enough nutritious food is produced 

to fit with local demands and market strategies and that are able to adapt to climate change and to 

contribute to its mitigation.  



29 

 

Climate Change and impacts patterns on rice based farming systems in Mekong Delta 

Several extensive works (Jica, 2013, Ngo and Wassmann, 2016) have developed models to foreseen 

what will be the impacts of climate change scenarios on cropping and farming systems in Mekong River 

Delta. These models highlight key evolution trends notably (i) flood regime in upper regions (figure 29) 

that will be enhanced by heavier rainfalls in October and November and, (ii) accentuated and extended 

saline intrusions figure 30), under the combined influences of SLR and dryer dry season with delayed 

rainfalls onset, in coastal regions and upward, along major Mekong distributaries. Consequences of 

these evolutions are crossed with contrasted climatic year, corresponding to hydrological anomalies 

of El Niño (drought of 1998 or 2015-2016) or La Niña (“exceptional” Mekong discharge and flood like 

e.g. in 2000) to integrate the large inter-annual variation observed along the last decades (Räsänen 

and Kummu, 2013). These models integrate also upstream development with hydropower dams 

construction (China, Laos, Cambodia mainly) and extension of irrigated areas in Thailand and 

Cambodia; dams’ constructions can be seen as a factor of discharge regulation (Ngo and Wassmann, 

2016) capable to partly offset CC impacts like salinity intrusions in dry season and flood in rainy season 

but also impacting sediment deposition rate and a flush capacity for salt and acidity in the early phase 

of the flood, in June - July. These modeling approaches help also to prospect the impact of hardware 

development like major and medium/small-scale sluice gates on estuaries and canals as well as sea-

dykes upgrades to control saline intrusions and floods. 

Figure 29: Evolution of the inundation depth between August and October in a year of high flow with 

a SLR of 30 cm (2050) (in JICA, 2013). 

Furthermore, the model-based prospective allow to test the effect of civil engineering constructions 

to counteract saline intrusions linked to SLR and drought expected to be more frequent. According to 

scenario of more or less intensive “hard” constructions, including sluice gates and up-grading of sea-

dykes network, models delineate hot spot zones of changes, notably from fresh to brackish and from 

brackish to saltwater (Smajgl et al., 2015). 

This zoning indicates the evolution trends that most affected regions will undergo, especially in 

extreme climatic years (decrease in upstream flows). It is then foreseen patterns of change among rice-

based agroecosystems, inspired by what have been observed, in recent years, in affected regions by 

salinity: abandon of one irrigated rice cycle, integration of upland crops (short term veggies, annual or 

perennial) and integration of brackish shrimp culture in rotation with summer – autumn rice (CGIAR, 
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2016). These areas, where systemic changes will occur, will be fringed by interface zones where paddy 

production will continue through unchanged cropping systems pattern but under increasing risk of 

saline intrusion (water with 4 to 10 g/l) in February (end of the winter – spring cycle) or in June (early 

stage of summer-automn cycle). 

 

Figure 30: Evolution of the saline intrusions between drier month (April) and beginning of the flood 

(June) in a year of low with a SLR of 30 cm (2050) (in JICA, 2013). 

Accompanying transitions in the different “hot spot” zones, for both accrued risks of inundation and 

saline intrusions, should mobilize participatory R&D works on systems design. In addition, developed 

innovations will remain under pressure of the abiotic risks evolution and this work should take the 

form of medium-long term and dynamic innovation platforms. For instance brackish shrimp 

aquaculture, in rotation with rainy season rice, developed by farmers in response to saline intrusion in 

dry season are also threaten by excessive salt which induces reduced growth rates and diseases 

outbreaks. 

Cropping systems design in response to CC induced challenges and potential DMC inputs 

As already mentioned, CC will induced two major types of challenge in Vietnamese MRD, on one hand 

and in upstream regions, more frequent and pronounced flood events occurring in the 2nd half of the 

rainy season, and, on the other hand, in coastal provinces, saline intrusions impacting crops 

productivity in extended zones. 

In each of these areas, CC induced problems will present local gradients of gravity according to position 

in the “micro-topography” and salinity concentration, those site specificity being influenced by 

upstream development (hydropower, irrigation) and downstream protection (sea-dykes, sluice gate). 

In addition to these local characteristics, severity of stresses will greatly vary from year to year 

according to local and river catchment climate; transboundary coordination being needed, in the 

future, to plan regulation of water discharge in El Niño event. 

These evolutions patterns require an array of adaptation measures to adjust cropping and farming 

systems. A first group of measures will consist in an adjustment of the existing systems, through for 

instance the development and integration of high yielding varieties with improved tolerance to salinity. 

Several breeding programs are in progress, some mobilizing markers (Ngo and Wassmann, 2016) and 



31 

 

some varieties can maintain productivity superior to 5 t/ha despite episodic irrigation with water with 

salt concentration of up to 3 g/l. In the same perspective, some measures will focus on stress-avoiding 

tactics by harnessing cropping systems calendars with cut-off dates; this approach will call for the 

development of varieties offering a range of cycle lengths, including short one, to secure harvest before 

flood (summer-autumn cycle) or saline intrusion (counter season cycles). It is probable that these 

adjustments will benefit soon of support tools for decision based on improved El-Niño Southern 

Oscillation and related weather predictions (Räsänen, 2013; CGIAR, 2016). 

A second group of evolutions will introduce structural evolution of the cropping systems; it will 

generally consist in replacing one or two rice cycles in the annual succession by other type of 

production; these alternatives could consist in other crops, upland annual and/or perennial species, or 

integration with aquaculture or other breeding activities. The recent soaring of the annual succession 

between summer-autumn rice with brackish shrimp culture in place of a double rice cycle is an 

exemplary illustration of this type of innovation process (Photo 1 and 2). 

Thus, the elaboration of adaptive pathways should mobilize in sequence, marginal adjustments of the 

existing practices and structural shifts, breakthrough innovation, with integration of complete novelty.  

But both types of evolutions might be eased and acquire improved resilience capacity through the 

integration of CA principles. Furthermore, CA could help, through the mobilization of agroecological 

services, in recuperation process of the agro-ecosystems after extreme events like flood, drought or 

severe salt intrusion (high tides, storms). 

The complex mosaic of agroecosystems in MRD, some marked by very specific features (cf. the large 

extension of acid sulfate soils), will request to conduct on-field works to adjust CA based proposal in 

key situations representatives of the most challenging situations.  

Regarding the complex biogeochemical processes occurring in acid sulfate soils, driven by oxido-

reduction under humidity fluctuation, CA could contribute to favor regulation process. For instance, 

mulch could help to maintain appropriate soil moisture and delay oxidation / acidification processes 

in case of dry spell; mulch could also contribute to limit salt injury by limiting soil temperature and 

process of sodium concentration in soil and plant. Progressive accumulation of soil organic matter in 

upper horizon could act as electron donor and contribute to balance oxidation / acidification process 

with an appropriate and minimum moisture control. On the contrary, O.M. in excess under flooding 

conditions could accentuate yet too low Eh and lead to complete anaerobiosis. In the meantime, it is 

hard to anticipate what would be the impact of a progressive change in soil structure of superficial 

horizons, the evolution of the exchangeable cationic capacity and its progressive saturation by O.M. 

supply. These evolutions will be site-specific and most likely vary with water control and occurrence of 

drought as well as salinity intrusion and their possibility of regulation by hardware. 

Some techniques can be easily introduced in CA based management of the crops and give flexibility in 

the overall management of the crops sequence. We can list the possibility of broadcast sowing in 

standing mulch before its control, the “ratoon” rice production (secondary harvest on regrowing rice 

stalks). This latter option should be tested and compare to currently proposed action to introduce a 

double summer-autumn crop by transplanting a short cycle variety after 30-40 days in nursery, right 

after a first short cycle rice harvest. In addition, “ratoon rice” is a low / no risk option that could be 

conducted with the implementation of a cover crop species (hydromorphic / high water tolerant 

species to be selected). 

Such alternative should be progressively built up and adjusted through participatory approaches 

mixing farmers groups and extension services and researchers. These platforms developed in key agro-

ecosystems, selected for their importance and sensibility to foreseen changes could become central 

tools to support complex and collective transition processes that involved multilevel and coordinated 

decisions. These platforms could serve in the meantime of reference point to assess GHG emissions 

and CC attenuation potential of the designed innovations.   
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Photo 1 and 2: Illustration of a transition from double rice to rice – brackish succession in 3 years. 
 

Photo 1: 11th February 2013 (south permanent aquaculture; North: maturing or harvested winter-spring rice  

Photo 2: 29th February 2016 (south unchanged; North dominant of shrimp culture, few harvested rice) 

9°04’43 N and 104°55’49 E / # 3,4 km  altitude (© Google Earth) 
 

 

Agricultural policies and institutional supports 

Inducing systemic changes require greater flexibility but also different extension approach, necessarily 

bottom-up, combining training to understand new principles and access to attached know-how and 

requested technical production factors (i.e., agricultural implements, seeds …). By contrast, technical 
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message attached to thematic adjustment (i.e. new rice varieties, fertilizer use, water management …) 

are simpler, and more easily exposed and diffused. 

Shifting to DMC systems require a set of conditions that most of the time are not in place when starting 

the process of co-designing cropping systems with smallholders. Some could be related to technical 

difficulties and the need to have access to specific tools (i.e., seeds of cover crops, roller crimper, no-

till planter ...). Others difficulties could be related to the level of understanding among farmers to keep 

the crop residues on field to improve soil fertility, diversifying their crops and using key cover crops. 

Perception of the positive effects of DMC by farmers and further appropriation of a new rationale for 

fertility management could be slow. Practicing DMC is an iterative learning process where smallholders 

will progressively improve their knowledge and skills. Cash disposal is also one of the main constraints 

that smallholder farmers face. Financial tools should be in place addressing both the usual households' 

deficit of cash flow and the investment capacity. These series of remarks highlight the complex 

elaboration of the DMC-based technical pattern. The cropping systems design process has to progress 

with the triggered biological transformations of the agro-ecosystems at field and landscape levels; it 

has also to evolve through and under an evolutionary perception and appropriation of the new 

practices by farmers supported by financial and institutional supports.  

Agricultural policies need to account for the needs of both mitigation and adaptation. Investing 

substantially in adapting rice farming to climate change can result in substantial mitigation co-

benefits. Economic incentives (e.g., special credit lines for low-carbon rice farming, sustainable 

agriculture, payment for ecosystem services) and regulatory approaches (e.g., enforcement of 

environmental law controlling air and water pollution) should be implemented to foster the 

dissemination of climate smart cropping systems. Investments in scientific knowledge (assessing GHG 

for a range of rice farming systems and practices), development (designing alternative rice cropping 

systems), and diffusion (increase of resource use-efficiency) are of paramount importance to build 

synergies between adaptation and mitigation. By contrast a lack of investment will result in limited 

scientific and policy knowledge, as well as institutional and farmers’ own financial and cognitive 

constraints. 

Adaptation and mitigation to climate changes should be integrated in strategic plans to address 

complexed challenges in various regional rice production contexts. There is a need to bring together a 

large range of stakeholders and particularly joining water management and agricultural institutions 

with: 

• policy-makers to deal with changes linked to multiple drivers such as socio-economic 

evolutions (i.e., urbanization, population growth, new trade-offs around water resource) and 

environmental changes (i.e., climate change, its immediate impact on weather variability, 

medium and long term impacts on average temperature and sea level rise), 

• civil engineers to design new forms of infrastructures facilitating sediment deposition 

recognized as a potential adaptation strategy and incorporated recently into the management 

plans of the Mekong delta (MDP, 2013), 

• farmer’s organizations and agronomists to design alternative and innovative diversified rice 

farming systems to first adapt these systems to environmental attributes that are becoming 

unstable and changing at an accelerating rate. 
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