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ABSTRACT 
Vietnamese pangasius farming needs to produce efficiently 
to compete in world markets. This study investigates the input- 
and output-specific technical inefficiency of Vietnamese 
pangasius farmers. First, we used a Russell-type (input–output) 
directional distance function to estimate the input- and output- 
specific technical inefficiency. Second, we applied a bootstrap 
truncated regression to analyze the factors influencing these 
technical inefficiencies. Results show that the main challenges 
for enhancing the performance of Vietnamese pangasius 
production are inadequate use of capital assets (inefficiency 
of 42%) and improper methods to achieve higher fish yield 
(inefficiency of 30%). Input-specific technical inefficiency (pond 
area and feed) is negatively associated with the experience and 
education level of pangasius farmers. Location of the farm in a 
saltwater intrusion area is positively associated with the 
inefficiency of producing fish. Outcomes of this study are useful 
to identify successful strategies to minimize the use of inputs 
while simultaneously maximizing fish production. 

KEYWORDS  
Aquaculture; bootstrap 
truncated regression; data 
envelopment analysis; 
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Introduction 

Vietnam is the world’s largest producer of pangasius. Total production has 
increased in recent years, from 37,500 tons in 2001 to more than 1.1 million 
tons in 2016 (VASEP, 2016). In 2016, pangasius products accounted for 23% 
of all fish fillet consumption in USA, 18% in China, 15.2% in the European 
Union, 7.9% in the Association of Southeast Asian Nations (ASEAN), 4% 
in Brazil, 4.9% in Mexico, and 28% in other countries (VASEP, 2016). Parallel 
to the fast-growing pangasius production, world markets increasingly require 
seafood products to be produced in a sustainable way. 

At present, most pangasius farmers use surface water in their fish ponds 
and discharge organic matter and nutrients from ponds, such as nitrogen 
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and phosphorus directly into waterways linked to the Mekong River causing 
eutrophication (Anh, Kroeze, Bush, & Mol, 2010; Bosma, Hanh, Potting, & 
Dung, 2009). The use of polluted water contributes to diseases in fish and thus 
to increased use of antibiotics and other chemicals. The resulting water 
pollution results from many factors, such as excessive use of feed, overuse 
of antibiotics and other chemicals, and lack of wastewater treatment systems 
(Anh et al., 2010; James & Francisco, 2015). Thus, potential options to reduce 
water pollution from pangasius production are to reduce the use of feed and 
chemicals. According to Anh et al. (2010), redundant feed contributes most to 
the generation of waste sludge in pangasius production. Moreover, the market 
for cheap white fish products, such as pangasius, is competitive because many 
possible substitutes are available (CBI, 2015; Little et al., 2012; Troell et al., 
2014). Vietnamese pangasius products have gained a large market share in 
international markets because of their relatively low price (Bush & Belton, 
2011). Reducing the use of inputs and enhancing the competitiveness of the 
Vietnamese pangasius sector in the world market can lead to reducing the 
technical inefficiency of pangasius production. 

Several studies have estimated technical efficiency in fish farming. For 
instance, Alam (2011) estimated the average constant returns to scale technical 
efficiency (CRS TE) of pangasius farmers in Bangladesh to be 0.78, implying 
that farmers can reduce the use of all inputs by 22% and produce the same 
output level. Kaliba and Engle (2007) reported the CRS TE of catfish farmers 
in USA to be 0.57, suggesting that on average, farmers can decrease the use of 
inputs by 43% and produce the same level of output. Determinants of technical 
efficiency or inefficiency in aquaculture can be divided into two groups: socio-
economic and demographic characteristics of farmers (e.g., age, experience, 
education, and gender) and farm practices (e.g., pond size, culture length, farm 
location, and type of feeds) (see Iliyasu et al. (2015) for a review). 

The existing studies on technical efficiency in fish production measured 
technical efficiency for all inputs simultaneously, assuming that all inputs 
can be reduced by the same magnitude. In practice, some specific inputs, 
or inputs and outputs, are more controllable than others. Thus, inefficient 
farmers have better opportunities to reduce certain inputs or increase the 
production of some outputs. The identification of input- and output-specific 
technical inefficiency would help farmers to improve the performance of their 
farms by providing information to better prioritize their efforts to reduce the 
use of inputs and expand outputs. In an input- and output-specific approach, 
technical inefficiency is measured for each input and output separately as the 
maximum feasible reduction in input use and expansion of outputs. 

The objective of this study was to measure the input- and output-specific 
technical and scale inefficiency of Vietnamese pangasius farmers and to assess 
the impact of farmer demographics and farm characteristics on these technical 
inefficiency. Insight into the determinants of technical inefficiencies is 
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expected to provide useful information for policymakers, which can be used to 
design policies and measures to help farmers improve their farm management. 

The remainder of the paper is organized as follows. “Materials and 
methods” section presents the methods, data collection, and the selection of 
variables. This is followed by the presentation of results and discussion in 
the third section. Last section provides conclusion and policy implications. 

Materials and methods 

Data envelopment analysis and bootstrap truncated models 

This paper used a two-stage approach to measure and explain the technical 
inefficiency of Vietnamese pangasius farmers. At the first stage, data envelop-
ment analysis (DEA) was used to measure the input- and output-specific 
technical, while at the second stage, bootstrap truncated regression was used 
to estimate the impact of farmer and farm characteristics on these technical. 
DEA is a nonparametric technique that is frequently used to measure techni-
cal inefficiency in the presence of multiple inputs and outputs (Charnes, 
Cooper, & Rhodes, 1978; Dey et al., 2005; Farrell, 1957; Iliyasu et al., 2015; 
Singbo & Oude Lansink, 2010). 

Russell-type (input–output) directional distance function 
At the first stage, the Russell-type (input–output) directional distance 
function was used to compute the input- and output-specific technical 
inefficiency (Gaitán-Cremaschi, van Evert, Meuwissen, and Oude Lansink 
(2015), Mahlberg and Sahoo (2011), and Wang, Zhou, and Zhou (2013)). 
The Russell-type (input–output) directional distance function accounts for 
the inefficiency due to the slacks in inputs and outputs. Consider that there 
are k ¼ 1, …, K pangasius farms using a vector x of N inputs and producing 
a vector y of M outputs. The input- and output-specific technical inefficiency 
of farm k relative to the production frontier, assuming variable returns to 
scale (VRS), is computed using the following linear programming problem: 

~Dðx; y; gjVRSÞ ¼ max
1
2

1
N

XN

n¼1
ln þ

1
M

XM

m¼1
bm

 !" #

ð1Þ

s.t. 

XK

k¼1
akxkn � xn � lngxn; n ¼ 1; . . . ;N; ðiÞ

XK

k¼1
akykm � ym þ bmgym; m ¼ 1; . . . ;M; ðiiÞ
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XK

k¼1
ak ¼ 1; ðiiiÞ

ln � 0 8nð Þ; bm � 0 8mð Þ: ðivÞ

The objective function in Eq. (1) represents the weighted average technical 
inefficiency of inputs and outputs. Each estimated ln or bm provides the nth 
input-specific or mth output-specific technical inefficiency score of a fish 
farm, which is weighted, respectively, by the total number of N inputs and 
M outputs. In this case, the inputs and outputs each contribute half to the 
weighted technical inefficiency score. An estimated technical inefficiency of 
zero represents a fully efficient farmer, who is located on the production 
frontier. An estimated technical inefficiency greater than zero indicates the 
presence of technical inefficiency; the farmer is located below the production 
frontier. The directional vectors (gx, gy) used in this study are the observed 
quantities of inputs and outputs. Hence, the technical inefficiency is 
interpreted as the percentage by which input use can be reduced and output 
can be increased (Färe & Grosskopf, 2010). 

The first two constraints reflect strong disposability of inputs (i) and 
outputs (ii), where finite inputs can only produce finite outputs (Färe, 
Grosskopf, & Pasurka, 2007). Constraint (iii) imposes VRS; the model in 
(1) can be transformed into a model assuming constant returns to scale 
(CRS) by replacing restriction 

PK
k¼1 ak � 0. Constraint (iv) restricts the 

technical inefficiency scores to non-negative values. 
Scale inefficiency, which reflects the ability of a farmer to employ each 

input and output at an optimal scale, can be computed as the difference 
between the technical inefficiency under CRS and VRS. All linear 
programming problems consistent with Eq. (1) were solved using General 
Algebraic Modeling Systems (GAMS). 

Bootstrap truncated regression model 
At the second stage, the bootstrap truncated regression procedure proposed 
by Simar and Wilson (2007) was used to assess the impact of farmer 
demographics and farm characteristics on input- and output-specific 
technical inefficiency. Simar and Wilson (2007) noted that traditionally used 
approaches such as censored regression and truncated regression are invalid 
due to serial correlation of nonparametrically derived inefficiency estimates. 
The bootstrap approach developed by Simar and Wilson (2007) corrects for 
this serial correlation. This technique has been used to study the determinants 
of specific technical inefficiency in other farming systems (Singbo and Oude 
Lansink 2010; Singbo, Oude Lansink, and Emvalomatis 2014). The model in 
this study was specified as: 

TEk ¼ b0 þ b1AGEþ b2 expþb3EDUþ b4GENþ b5LOTþ ek ð2Þ
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where TEk are the input- or output-specific technical inefficiency scores of 
farm k obtained from the DEA model; AGE is the age of the farmer measured 
in years; EXP is the pangasius production experience of the farmer measured 
as the inverse of the number of years; EDU is the level of education of the 
farmer measured in years; GEN is the gender of the farmer dummy (1 if 
female, 0 if male); and LOT is the farm location dummy (1 if saltwater 
intrusion region, 0 if freshwater region). The random error terms, ek, are 
assumed to be normally distributed and represent unobservable variables, 
measurement errors, and specification errors. For the input- and output- 
specific scale inefficiency, bootstrap ordinary least squares (OLS) was used 
because the input- and output-specific scale inefficiency are both positive 
and negative. Eq. (2) was estimated using STATA version 8. 

The variable EXP was measured as the inverse of the number of years of 
experience with fish farming (one divided by the number of years of 
experience). The inverse was used because a scatter diagram showed a convex 
nonlinear relationship between the number of years of experience in fish 
farming and technical inefficiency. This means that the marginal impact on 
technical inefficiency declines with the number of years. The inverse of the 
number of years can capture this relationship. The marginal effect of an 
additional year of experience in fish farming was computed at the sample 
mean of the number of years of experience and is given by the partial 
derivative of Eq. (2) with respect to the number of years as: 

@Yk

@# years experience
¼ c� �

1
#years experience2

� �

ð3Þ

Data collection and selection of variables 

Data collection 
Data for this study were gathered in January 2013 through a questionnaire 
survey of 82 farmers (Ngoc, Meuwissen, Le, Verreth, et al. 2016). The farmers 
participating in the survey mainly represented small and medium pangasius 
farms (less than 3 ha). A workshop was organized in December 2013 to 
increase the number of observations for large farms (equal to or greater than 
3 ha). During the workshop, 14 farmers with large-scale farms were invited to 
complete the same questionnaire as in the survey. Respondents for the survey 
and workshop were randomly selected from the lists of pangasius farmers 
maintained by the Aquaculture Department; aquaculture officers from this 
department assisted with the selection process. 

For the survey, the selected pangasius farmers were from An Giang, Can 
Tho, and Soc Trang provinces. Participants in the workshop also came from 
the Dong Thap, Vinh Long, and Tra Vinh provinces. Respondents covered 
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the two main production regions in Vietnam, i.e., pangasius farmers from Soc 
Trang and Tra Vinh mainly operate newly developed farms in the saltwater 
intrusion region. Pangasius farmers in the other provinces come from the 
traditional pangasius production areas in the freshwater region. 

Of the 96 questionnaires, 8 were excluded from the analysis due to 
incomplete information. Another eight questionnaires were excluded due to 
the presence of outliers. Outliers were defined as values beyond two standard 
deviations from the median. According to Fried, Lovell, and Schmidt (2008), 
outliers could influence the position of the production frontier far from the 
inefficient farmers. 

Variables for the inefficiency computation 
Inputs for pangasius production consisted of three variable inputs 
representing the operational costs, i.e., feed, labor, and others (all expenses 
of pond preparation, fingerling, energy, sludge discharge, and veterinary 
services), and two fixed inputs, i.e., pond area and capital. Table 1 presents 
the descriptive statistics of the input and output variables. The output is fish 
yield and is expressed in tons. Operational costs and capital are expressed as 
annual costs in USD (applied exchange rate: 1 USD equals 20,000 VND). 
Pond area is expressed in ha. 

Feed is the main cost of pangasius farms, accounting for 84–86% of oper-
ational costs (Ngoc, Meuwissen, Le, Verreth, et al. 2016). Labor consists of 
family labor and hired labor. Cost of hired labor was measured as the salary 
paid to hired labor. To quantify the cost of family labor, the monthly salary 
for hired labor in the aquaculture sector was used and this value was multi-
plied by the number of family members working full-time on the farm. The 
category Others includes the expenses associated with pond preparation, 
fingerling, energy, sludge discharge, and veterinary services. Variable input 
costs differed among farms, with an average of 139,500 USD for capital, 
779,700 USD for feed, 16,300 USD for labor, and 116,100 USD for other costs. 

Table 1. Descriptive statistics of inputs and outputs (for the most recent production cycle in 
2012–2013). 

Item Mean Standard deviation Minimum Maximum 

Inputs  
Pond area (ha)  1.6  1.5  0.2  8.5  
Capital (1,000 USD)  139.5  146.5  5.7  744.1  
Feed (1,000 USD)  779.7  725.0  30.9  3,531.1  
Labor (1,000 USD)  16.3  14.9  1.6  72.3  
Othersa(1,000 USD)  116.1  114.5  4.4  562.9 

Output    
Fish yield (tons)  879.2  788.8  44  3,666 

aOthers include all expenses of pond preparation, fingerling, energy, sludge discharge, and veterinary 
services.   
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Pond area represents the total water surface area used for pangasius 
production. Pond area ranged from 0.2 to 8.5 ha, with an average of 1.6 ha. 
Capital cost includes the annual depreciation of capital invested in pond 
construction, sluice gates, waste water treatment (if any), storage houses, 
and equipment. The capital cost differed across farms, ranging between 
5,700 USD and 744,100 USD, with an average of 139,500 USD. Similarly, 
the output variable fish yield also varied greatly, from 44 to 3,666 tons with 
an average of 879 tons. 

Variables for the bootstrap truncated regression model 
The following variables were used in the bootstrap truncated regression 
model: age of farmers (measured in years), experience (measured as the 
inverse of the number of years), the level of education (number of years), 
gender (1 if female, 0 if male), and farm location (1 if saltwater intrusion 
region, 0 if freshwater region). 

These variables were chosen based on the literature on technical inef-
ficiency in the aquaculture sector. The literature shows negative associations 
between age and technical inefficiency, while experience, gender, and edu-
cation all have positive relationships with technical inefficiency. For instance, 
Iliyasu et al. (2015) concluded, in an extensive review of technical inefficiency 
studies in aquaculture, that younger farmers may be less technically inefficient 
than their counterparts, presumably because of their higher willingness to 
adopt technological innovations. Regarding experience, more experienced 
farmers may make better managerial decisions and may therefore be less inef-
ficient (Engle, 2010; Iliyasu et al., 2015). Likewise, more educated farmers are 
generally less technically inefficient, possibly due to their open minds toward 
new technological information as well as better capability to access and 
process such information (Dey et al., 2005; Iliyasu et al., 2015). In addition, 
female fish farmers were found to be more technically inefficient than their 
male counterparts, likely attributed to the domestic responsibility of women 

Table 2. Descriptive statistics of farmer demographics and farm characteristics (n ¼ 80). 
Item Mean Frequency (%) Standard deviation Minimum Maximum 

Farmer demographics  
Age (years)  43   7.03  23 60  
Experience (years)  8   2.23  5 20  
Education (years)  11   2.12  6 16  
Gender (1 if female, 0 if male)  
Female   8     
Male   92    

Farm characteristics 
Locationa (1 if saltwater intrusion region, 0 if freshwater region)  

Saltwater intrusion region   14     
Freshwater region   86    

aSaltwater intrusion region consists of Soc Trang and Tra Vinh provinces; freshwater region consists of An 
Giang, Dong Thap, Can Tho, and Vinh Long provinces.   
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in most developing countries (Onumah, Brümmer, & Hörstgen-Schwark, 
2010). Farm characteristics such as location are also expected to have a 
negative effect on technical inefficiency. For instance, Anh et al. (2015) found 
that Vietnamese farms located in the saltwater intrusion region are less 
technically inefficient than those in the freshwater region. 

Table 2 provides the descriptive statistics of the variables used in the boot-
strap truncated regression. Table 2 shows that the respondents had a relatively 
low average age, i.e., 43 years old, with about 8 years of experience (as 
reflected by the average inverse ratio of 0.12) and up to 11 years of education. 
Within the sample, 92% of respondents was male and 86% of respondents 
originated from the main pangasius freshwater production region. 

Results and discussion 

Technical and scale inefficiency results 

Table 3 shows the technical and scale inefficiency scores of Vietnamese pan-
gasius farmers. The weighted average score of technical inefficiency relative to 
the frontier was 0.25 assuming VRS and 0.31 assuming CRS. The difference 
between the technical inefficiency under the CRS and VRS assumptions indi-
cates the presence of scale inefficiency in pangasius production. The scale 
inefficiency was quite low, with a weighted average of 0.06, indicating that 
the majority of pangasius ponds are operating close to their optimal size. 

The results for the weighted average technical inefficiency scores suggest a 
substantial scope for improving performance by reducing the use of inputs 
and increasing output. The weighted average scores, however, conceal the 
variation in inefficiency across inputs and output. For instance, Vietnamese 
pangasius farmers could reduce the use of capital by 42%, labor by 23%, pond 
area by 16%, others by 10%, and the use of feed by 3%, while simultaneously 
increasing the fish yield by 30% relative to the VRS frontier. These results 
reveal that the technical inefficiency of pangasius farmers is mainly driven 
by the high inefficiency in the use of capital and the relatively low fish yield. 

Table 3. Input- and output-specific technical and scale inefficiency. 

Item 

Technical inefficiency  
under VRS 

Technical inefficiency  
under CRS 

Scale  
inefficiency 

Mean Frequency (%) Mean Frequency (%) Mean Frequency (%) 

Weighted average  0.25 84  0.31 90  0.06 88 
Input-specific  

Pond area  0.16 60  0.21 75  0.05 79  
Capital  0.42 74  0.49 81  0.07 81  
Feed  0.03 21  0.02 15  −0.01 20  
Labor  0.23 69  0.29 73  0.06 76  
Others  0.10 49  0.13 64  0.03 68 

Output-specific  
Fish yield  0.30 80  0.39 88  0.09 86   
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The input- and output-specific scale inefficiency scores ranged from −0.01 
to 0.09. It should be noted though that no farm in the sample presented a 
negative weighted average scale inefficiency over both inputs and outputs. 
Hence, the method itself can produce negative values for input-specific and 
output-specific scale inefficiency. The technical inefficiency scores of capital, 
pond area, and labor are relatively low, which is explained by their quasi-fixed 
nature, i.e., their levels are not easily adjusted from one year to another. In 
practice, it is costly to upscale or downscale the investments in machinery, 
equipment, or pond area. Similarly, labor is not easily adjusted from year 
to year, due to the large share of family labor in total labor costs. The low feed 
technical inefficiency might be explained by careful fish feeding as feed costs 
are the main cost of pangasius production. 

Results in Table 3 also show that farmers are more technically inefficient in 
producing fish yield than in utilizing inputs. Within the sample, 21–74% of 
the farms were inefficient in the use of inputs, whereas 80% of the farms were 
inefficient in the production of fish yield. 

Determinants of input- and output-specific technical inefficiency 

Table 4 presents the estimated parameters of the bootstrap truncated 
regression model. The discussion in this section is mainly restricted to the 
variables that had a statistically significant effect on input- and output-specific 
technical inefficiency. Most of the signs of the estimated parameters for the 
determinants of technical and scale inefficiency were in line with a priori 
expectations. 

Regarding the technical inefficiency relative to the VRS frontier, the variable 
experience (years) had a significantly negative effect on pond area and feed 
technical inefficiency, indicating that an additional year of experience is asso-
ciated with a better management of the pond by 1.6% and the use of feed by 
4%. Experienced fish farmers may make better managerial decisions on farms 
and be more efficient in utilizing the pond and feed to their full potential. This 
is in line with Kaliba and Engle (2007), who found that experienced farmers 
may make better decisions regarding the feed brand, feed ingredients, and feed 
practices. In contrast, experience was found to have a positive and significant 
relation with the technical inefficiency of fish yield. This might be because 
experienced farmers are more conservative and find it difficult to adjust and 
adopt new technologies, as suggested by Onumah et al. (2010). 

We also found that education had a negative effect on the technical 
inefficiency of pond area, feed, others, and fish yield, implying that, ceteris 
paribus, an additional year of education decreases inefficiency in the use of 
these inputs and increases fish yield by 3–4%. This result is consistent with 
our prior expectation that more educated farmers are generally more likely 
to adopt technological innovations due to their open minds toward new 
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technologies and because they have a better capability to access and process 
information (Dey et al. 2005; Ngoc, Meuwissen, Le, Bosma, et al. 2016). 
Therefore, more educated farmers are better in managing the pond, feeding 
fish, and using other variable inputs to increase fish yield. 

The location of farms in the saltwater intrusion region was negatively 
associated with the technical inefficiency of capital and fish yield. The negative 
relationship between location and capital technical inefficiency suggests that 
farmers farming in the saltwater intrusion region are, ceteris paribus, 33% 
better in managing their capital assets than those in the freshwater region. 
Farmers with farms located in the saltwater intrusion region might be more 
careful in investing in and operating their capital assets because they have to 
cope with salinity intrusion, as suggested by Anh et al. (2015). However, these 
farmers also adapt to the salinity intrusion by limiting their stocking frequency, 
i.e., only once a year, and thus appear more inefficient (29%) in producing fish 
yield than farmers in the freshwater region, in line with our prior expectation. 

The results of regression of technical inefficiency relative to the CRS 
frontier were not always consistent with the results of the regression relative 
to the VRS frontier, given the scale component in the former. For instance, 
age of farmers was negatively and significantly associated with the technical 
inefficiency of fish yield, implying that each additional year decreases, 
ceteris paribus, the technical inefficiency of fish feeding by 1%. This result 
contradicts our prior expectation and suggests that farmers gain experience 
in using resources effectively over time, as suggested by Amos (2007). 

Furthermore, there was a negative and significant relationship between 
location of farms and the technical inefficiency of other inputs, suggesting that 
farmers with farms located in the saltwater intrusion region are, ceteris 
paribus, 9% less technically inefficient in the use of other variable inputs than 
those in the freshwater region. In the long run, the unpredictable level of 
salinity intrusion can be controlled by investing in technological innovations 
and learning from others. This might give farmers farming in the saltwater 
intrusion region better opportunities to also monitor the use of other variable 
inputs. 

Regarding scale inefficiency as presented in Table 5, none of the variables 
were found to have a significant relation with input-specific scale inefficiency, 
whereas experience and location were found to influence the scale inefficiency 
of fish yield. The negative coefficient of experience indicates that experienced 
farmers are better in adjusting the scale of their operation as measured by 
the size of output, resulting in an improvement of fish yields by 2%. Better scale 
adjustment was also found for farmers farming in the freshwater region, with a 
13% improvement in fish yield compared to farmers in the saltwater intrusion 
region. This confirms the findings of Anh et al. (2015) that farmers limit the 
stocking frequency and thus reduce the annual yield of the farm to cope with 
salinity problems. 
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The nonsignificant effect of gender on both technical and scale inefficiency 
implies that the technical and scale inefficiency of farms operated by men 
are, ceteris paribus, the same as the technical and scale inefficiency of farms 
operated by women. This result contrasts with the findings of Onumah 
et al. (2010) for Ghana and Ekunwe and Emokaro (2009) for Nigeria; both 
these studies found that male fish farmers operate less inefficiently than their 
female counterparts. 

Conclusions and policy implications 

The main objective of this paper was to measure the input- and output- 
specific technical and scale inefficiency of Vietnamese pangasius production 
to identify potential areas for improvement and to assess the effect of farmer 
and farm characteristics on these technical and scale inefficiencies. The results 
provide information that is useful in designing measures to help farmers 
improve their farm management. 

We found that the main challenges for enhancing the performance of 
Vietnamese pangasius production are inadequate management skills in using 
capital assets, as indicated by a capital technical inefficiency of 42%, and improper 
methods for producing fish, as indicated by fish yield technical inefficiency of 
30%. Furthermore, farmers with a higher education level and more years of 
experience are generally better in managing the pond area, using fish feed, and 
producing fish yield. Farming in areas with saltwater intrusion is associated with 
a lower technical inefficiency in the use of capital assets and other variable inputs 
but also with a higher technical inefficiency in the production of fish yield. 

Results provide useful information for farmers and policymakers who aim 
to improve the performance of Vietnamese pangasius farms. The recommen-
dations for pangasius farmers are targeted toward those inputs and outputs 
with relatively high inefficiency. For instance, pangasius farmers can improve 
their capital management skills by better estimating the amount of required 
capital and the timing of capital asset replacement, and by monitoring 
the use of capital assets. Furthermore, the introduction of technological 

Table 5. Results of the regression of the input- and output-specific scale inefficiency scores on 
farmer demographics and farm characteristics. 

Variable 

Scale inefficiency 

Pond area Capital Feed Labor Others Fish yields 

Constant  0.205  0.323  0.062  0.299  0.301  −0.023 
Age  −0.002  −0.003  −0.000  −0.002  −0.002  0.002 
1/experiencea  0.006  0.006  0.001  0.005  0.008  −0.021 
Education  0.006  0.007  −0.000  0.007  −0.000  −0.007 
Gender  −0.017  −0.059  −0.003  −0.021  0.003  0.003 
Location  0.036  0.060  −0.006  0.006  −0.031  0.125 

aFor 1/experience, the coefficient represents the marginal effect of an additional year of experience calculated 
at the sample mean. The statistically significant variables at 5% level are in bold.   
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innovations that enable higher stocking densities and improve the quality of 
pond water, such as recirculating aquaculture systems (RAS) (see also the 
discussion in Ngoc, Meuwissen, Le, Bosma, et al. 2016; Ngoc, Meuwissen, 
Le, Verreth, et al. 2016), could potentially increase pangasius yields. 
Policymakers can assist farmers to improve their farm management by 
targeting farmers with lower education levels, fewer years of experience, 
and farms located in saltwater intrusion areas. 
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