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Abstract 

In order to map potential shifts of rubber (Hevea brasiliensis) cultivation as a consequence of the 

ongoing climate change in the Greater Mekong Subregion, we applied rule-based classifications to a 

selection of nine gridded climatic data projections (precipitation and temperature, Global Circulation 

Models (GCMs)). These projections were used to form an ensemble model set covering the 

Representative Concentration Pathways (RCPs) 4.5 and 8.5 of the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change at three future time sections: 2030, 2050 and 2070. We 

used a post classification ensemble formation technique based on majority outcome of the 

classification to not only provide an ensemble projection but also to spatially track and weight the 

disagreements between the classified GCMs. A similar approach was used to form an ensemble model 

aggregating the involved climatic factors. The level of parsimony between the ensemble projections 

and GCM products was assessed for each climatic factor separately, and also at the aggregate level. 

Shifting zones with high confidence were clustered based on their land use composition, 

physiographic attributes and proximity. Following the same ensemble formation technique and by 

setting a 28°C threshold for annual mean temperature, we mapped areas prone to exposure to 

potentially excessive heat levels. Almost the entire shift projected with high certainty was in form of 

expansion, associated with temperature components of climate and temporally limited to the 2030 time 

window where the total area conducive to rubber cultivation in the GMS is projected to exceed 50% 

by 2030 (from 44.3% at the turn of the century). The largest detected cluster (41% of the total shifting 

area), which also is the most ecologically degraded, corresponds to Northern Vietnam and Guangxi 

Autonomous Region of China. The area exposed to potentially excessive heat is projected to undergo a 

25-fold increase under RCP4.5 by 2030 from 14568 km
2
 at the baseline. 

Keywords 

Multi-model ensemble, mapping of rubber, Para rubber tree, cash crops, geographic information 

systems, biodiversity, deforestation, Mekong Region, Mainland Southeast Asia 
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Introduction 

Natural rubber is a key industrial commodity with wide application in manufacturing of a very diverse 

range of products. Although rubber-bearing plant species such as Taraxacum kok-saghyz and 

Parthenium argentatum have lately reemerged on the research and development scene as potential 

alternative sources of natural rubber (van Beilen and Poirier 2007a, 2007b, Rasutis et al 2015, 

Kreuzberger et al 2016, Dong et al 2017, Ramirez-Cadavid et al 2107, Soratana et al 2017), the Para 

rubber tree (Hevea brasiliensis) has retained its status as the sole viable source of natural rubber, 

which does not seem to change in the close future (Cornish 2017). Global consumption of natural 

rubber has exceeded 12 million metric tons in the last three years according to the International 

Rubber Study Group (IRSG 2017). Raising demand has been matched and to some extent surpassed 

by increases in production. Global trends of the natural rubber production and consumption and the 

harvested area are illustrated in figure 1.  

 

Figure 1 Global trends for consumption, production and area under rubber cultivation 
Segmented regression lines reveal the shifts in trends: 1996 is the estimated year before which a 118.9 thousand ton increase 

per year explained the growing consumption trend, accelerating to 220.4 thereafter while for production, the slope has shifted 

from 122.3 to 304.9 thousand tons per year by 1998 and year 2002 appears to be the most efficient breakpoint explaining the 

increasing trend of the global area under rubber cultivation, surging from 89.3 to 287.9 thousand hectares added each year. 

We have used R package 'segmented' (Muggeo 2003) version 0.5-1.4 to generate this figure from FAOSTAT (production and 
area) and IRSG (consumption) data (FAOSTAT 2017, IRSG 2017). Inkscape  0.91 was used for visual optimization. 

 

Recent decades have been associated with expansion (and to some extent shift) of rubber cultivation 

zones from the traditional rubber growing regions (the 10°S to 10°N equatorial belt) to higher latitudes 

and longitudes (Priyadarshan et al 2005, Ziegler et al 2009, Li and Fox 2012, Ahrends et al 2015, 

Chen et al 2016a, Chen et al 2016b). Thailand, the leading rubber producing country since 1990, 

which also has had the highest share of the global area converted each year to rubber cultivation (30% 

on average since the turn of the century), can well illustrate the situation (figure 2).  
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Figure 2 Temporal dynamics of the expansion of rubber cultivation in Thailand 
The provincial share of the Thai national increase in the area under rubber cultivation in two time sections: from 1993 to 

2007 (3158 km2) and from 2007 to 2015 (12485 km2). The 1993 Thailand Agricultural Census (NSO 1994) and the 

agricultural statistics yearbooks of Thailand (2009 and 2015) data (available at www.oae.go.th) and the GADM 

administrative divisions' shapefiles (2.8) were used. Maps were generated in ArcGIS 10.2.2 and visually optimized in 
Inkscape 0.92.  

 

The Greater Mekong Subregion (GMS) is an economic cooperation program consisting of six nations: 

China (Yunnan province and Guangxi autonomous region), Vietnam, Thailand, Laos, Myanmar and 

Cambodia. The GMS covers more than 2.5 million km2 of the Mainland Southeast Asia (MSEA), 

about 84% of which overlaps with the Indo-Burmese mega biodiversity hotspot (Myers et al 2000, 

Mittermeier et al 2004, figure 3). It stands for a substantial share of global rubber production (46.7% 

in 2014)
1
 almost exclusively coming from monocultures. Since its inception in the early 1990s, the 

GMS has in general, and its formerly isolated members (Myanmar, Laos and Cambodia) in particular, 

been undergoing rapid socio-economic change through regional development programs and 

transboundary investments in all conceivable sectors. At the same time, ecological degradation 

through accelerated landscape transformation has been observed. Heavy expansion of rubber 

monocultures and their spread to new areas have had a notable contribution to deforestation, habitat 

                                                             

1 This figure is mainly based on FAOSTAT data. As two Chinese provinces of Hainan and Guangdong 

contribute to the Chinese national production, their share (46.2% in 2014 as mentioned in the China 

Statistical Yearbook 2016 www.stats.gov.cn) has been deducted. In case of Laos for which FAO data is not 

available, United Nations Commodity Trade Statistics Data (comtrade.un.org) was used in combination 

with the historical commodity prices (www.indexmundi.com) to estimate the national rubber production: 

56 thousand tons. 
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fragmentation and biodiversity loss (Li et al 2007, Ahrends et al 2015, He and Martin 2015, Häuser et 

al 2015). 

 

Figure 3 Geographical extent covered by this study 
The Greater Mekong Subregion (dark gray area) is the spatial extent covered in this study. The GADM administrative 

divisions' shapefiles 2.8 (available at www.gadm.org) and the CEFP biodiversity hotspots shapefiles based on Myers et al 

(2000) and Mittermeier et al (2004) (available at www.cepf.net) were used to generate the map in ArcGIS 10.2.2 (visually 

optimized in Inkscape 0.92).  
 

In response to concerns about the ecological implications of the rapid expansion of rubber 

monocultures mostly replacing forests and swidden agriculture in MSEA, remote sensing techniques 

are regularly used to monitor land use conversion to rubber cultivation (e.g. Li and Fox 2011a, 2011b, 

2012, Dong et al 2012, 2013, Senf et al 2013, Fan et al 2015, Grogan et al 2015, Li et al 2015, Chen 

et al 2016a, 2016b, Kou et al 2017). More recently, remote sensing has been used to track additional 

details such as the rubber plantation age (Koedsin and Huete 2015, Kou et al 2015, Beckschäfer 2017, 

Trisasongko 2017). 
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Climate is one of the defining factors of the potential geographic extent for cultivation of any crop, 

and Para rubber is no exception. Momentous ongoing change in Earth’s climate attributed to human 

activity (Collins et al 2013, Power et al 2013, Lewandowsky et al 2016, Thorne 2017, Medhaug et al 

2017, Berger et al 2017) is comprehensively acknowledged by the scientific community (Cook et al 

2016). Some forecasts of the future potential geographical range for Para rubber in different parts of 

MSEA, mainly based on ecological niche modeling (Ray et al 2014a, 2014b, 2016, Ahrends et al 

2015, Liu et al 2015) and bioclimatic stratification (Zomer et al 2014) have recently been published.  

Gridded data of climatic factors simulating likely future conditions are essential inputs for forecasts. 

Global Circulation Models (GCMs) are useful sources of information commonly exploited to assess 

the potential impacts of climate change. Various institutions are engaged in creating such datasets and 

provide dozens of potential choices as input. Variations among GCMs, which mainly rise from 

structural and parameterization differences (Semenov and Stratonovitch 2010), can help to provide a 

means to capture and explore some of the projection uncertainties which have to be accounted for in 

order to obtain a realistic and scientifically sound image. Variabilities observed in sets of comparable 

simulations prompt some key choice questions, starting with whether a single simulation would suffice 

or a multi-member ensemble is needed for a reasonably robust forecast. In the latter case, can using 

the largest possible ensemble be a legitimate decision or could a reduced set of simulations perform 

better while minimizing the computational cost? Based on what criteria should a shortlisting take 

place? Should an average of all set members be used as ensemble or (considering the spatial nature of 

the data) is there a better option? How to handle the uncertainties (dispersion) inherent in the input 

differences (an important but so far overlooked factor)? And how to communicate these uncertainties 

in a comprehensive and useful way? 

Potential phytosanitary deficiencies as well as growth and yield failures due to crop exposure to 

excessive levels of ambient temperature are some of the more unsettling aspects of climate change. 

Despite the existing evidence for this matter (Abd Karim 2008, Kositsup et al 2009, Yu et al 2014, 

Golbon et al 2015, Jayasooryan et al 2015, Nguyen and Dang 2016), setting a clear-cut threshold for 

heat stress is still a debatable subject. 

Here, we apply rule-based geographical classification to a selection of the downscaled IPCC AR5 

climatic projections in order to map the potential geographical zones projected to be climatically 

suitable for Para rubber cultivation, or exposed to excessive heat, in MSEA in three time sections 

centered on 2030, 2050 and 2070 while accounting for and presenting the classification uncertainty. 

Page 5 of 26 AUTHOR SUBMITTED MANUSCRIPT - ERL-104888.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



6 

 

Data and methods 

Data  

We used the WorldClim  dataset (version 1.4, Hijmans et al 2005) to generate the baseline climatic 

map and an ensemble of nine GCMs under the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC AR5) as simulations forecasting the climatic conditions for three 20-

year time periods centered on 2030, 2050 and 2070. Facing the choice questions mentioned in the 

introduction section, we referred to McSweeney et al (2015), which ranked IPCC AR5 GCMs 

according to their regional performances and recommended a subset of 8-10 GCMs, avoiding the least 

realistic models while retaining the maximum plausible dispersion. Nine GCMs were selected using 

the regional plausibility rankings: ACCESS1.0 (Bi et al 2013, Dix et al 2013), CCSM4 (Gent et al 

2011), IPSL-CM5A-LR (Dufresne et al 2013), NorESM1-M (Bentsen et al 2013), GFDL CM3 

(Donner et al 2011), BCC_CSM1.1 (Xin et al 2013), MRI-CGCM3 (Yukimoto et al 2012), 

HadGEM2-ES (Martin et al 2011) and MPI-ESM-LR (Giorgetta et al 2013). The GCM data were 

provided by the Climate Change and Food Security (CCAFS) Program data portal of the International 

Center for Tropical Agriculture (CIAT) (available at www.ccafs-climate.org) and were downscaled to 

30 arc sec (∼1 km) resolution using delta method (Ramirez-Villegas and Jarvis 2010). Two of the four 

main climate change scenarios recognized by the IPCC AR5 were considered in this study: 

Representative Concentration Pathways (RCPs) 8.5 and 4.5. RCP 8.5 is a high greenhouse gas (GHG) 

emission scenario comprising no stabilization of the atmospheric GHG concentrations leading to 8.5 

Wm−2 of radiative forcing by 2100 and a globe over 4°C warmer than the pre-industrial era.  RCP 4.5 

is a moderate scenario accommodating GHG concentration stabilization by 2070 and radiative forcing 

of 4.5 Wm−2 (2.5° C temperature rise) by the end of the 21st century (Riahi et al 2011, Thomson et al 

2011). Land use data (see supplementary material figure S1, Hoskins et al 2016), the Biodiversity 

Intactness Index (BII) created by Newbold et al (2016, supplementary material figure S2) and the 

USGS GTOPO30 digital elevation model were used to cluster and describe the potential future 

expansion/retraction zones. We have also used the administrative divisions (GADM) shapefiles 

(available at www.gadm.org) in this study. 

Methods 

Five climatic suitability criteria adapted from Rivano et al (2015) listed in table 1 were used in this 

study. As mentioned by Thompson et al (2013) and Stephens et al (2012) it is essential to avoid 

averaging for ensemble formation as it leads to information loss on variation. Here we conducted the 

complete classification process on the involved gridded variables separately for each GCM and 

formed the ensemble product by the majority outcome for each grid cell overlaid with a simple 

uncertainty measure reflecting the strength of the majority. The total annual precipitation and the mean 

annual temperature layers were directly categorized to optimal, suboptimal and prohibitive ranges for 

each GCM, time section and scenario. The ensemble suitability projections were generated for each 
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'criterion × time section × scenario' combination consisting of the suitability class returned by the 

majority of the GCMs for every grid cell and a corresponding uncertainty layer reflecting the strength 

of the consensus on the class assigned to each ensemble grid cell ranging from full agreement (9/9) to 

mere majority (5/9). The monthly mean temperature and the monthly precipitation gridded data went 

through a similar process with two additional steps (see figure 4), summarizing the intra-annual 

distribution of precipitation and temperature. 

Table 1 Criteria and thresholds for classification of the gridded climatic data 

Climatic criterion 
Range 

Prohibitive Suboptimal Optimal Excessive 

Annual mean temperature (°C) < 23 23-25 25-28 > 28 

Number of months with mean temperature 

below 23°C 
> 5 1-5 0 - 

Annual precipitation (mm) < 1100 1100-1500 > 1500 - 

Number of months with precipitation 

below 50mm 
> 5 4-5 0-3 - 

Thresholds used in this study are adapted from Rivano et al (2015). The number of months with mean temperature below 

23°C is referred to as intra annual temperature distribution and the number of months with precipitation below 50mm as intra 

annual precipitation distribution.  

 

By overlaying the classification outcomes of the climatic layers, each grid cell was assigned one of the 

following summarizing classes: 'AllOpt' where all climatic layers returned an optimal classification, 

'SubOpt' where at least one layer was described as suboptimal and none as prohibitive, 'SingProh' 

where only one layer was in prohibitive range and 'MultProh' with more than one climatic criterion in 

the prohibitive range. The aggregate uncertainty layers were also overlaid to produce an aggregate 

uncertainty layer in four levels: 1) full agreement among GCMs for all four criteria, 2) only one 

criterion projected with 7 or 8 from 9 majority (and all other criteria possessing stronger consensus), 

3) only one criterion projected with 5 or 6 from 9 majority (and stronger consensus in all other criteria) 

and 4) two or more criterion projected with 5 or 6 from 9 majority. 

A point shapefile representing grid cells in the raster data was created for the shift zones with high 

aggregate certainty (levels 1 and 2) to which the corresponding land use, BII, altitude, slope, longitude 

and latitude values both in original and standardized form were extracted. We used the Grouping 

Analysis tool of the ArcGIS 10.2.2 to form clusters based on the standardized attributes and illustrated 

the outcome using 'ggplot2' 2.1.0 package in R. 
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Figure 4 Steps involved in intra-annual temperature distribution suitability classification (as illustration 

case) 
Continuous monthly mean temperature gridded data (Representative Concentration Pathway 4.5 for the 20 year period 

centered on 2030) ⓐ were used to generate binary layers ⓑ by setting a stress threshold ① (23° C). All 12 binary layers 

originating from the same Global Circulation Model (GCM) were summed ② to produce the layers reflecting the number of 

months projected to be below the threshold ⓒ (abbreviations AC to NO denote the corresponding GCMs). These layers were 

reclassified ③ to three levels: optimal, suboptimal and prohibitive ⓓ. The ensemble classification map ⓔ was generated by 

extracting the majority outcome of all GCMs for each grid cell ④. The uncertainty layer ⓕ reflects the consensus level 

among GCMs leading to the ensemble and was produced by counting the number of GCMs participating in the formation of 

the majority for each given grid cell ⑤. Panel ⓖ shows the geographic extents of the frame selected for illustration. All 

layers used in each step were assigned equal weights and the arrow color difference is only for visual clarity. ArcGIS 10.2.2 
and Inkscape 0.91 were used for generation of this figure. 

 

Sankey diagrams are illustration tools suitable for description of multidimensional and hierarchical 

categorical data and are most often used to show material or energy flows through network systems. 

Geographical classification dynamics over time can also be very efficiently presented by Sankey 

diagrams. As demonstrated by Cuba (2015), Sankey diagrams are superior to cross-tabulation matrices 

in reflecting land use dynamics, particularly when multiple time sections are of interest. We generated 

Sankey diagrams to illustrate the climatic suitability class shifts projected to occur under RCP 4.5 and 

RCP 8.5 for each adjacent pair of time sections using the D3.js JavaScript library developed by 

Bostock et al (2011). 

Using the ensemble formation technique, we created an 'excessive heat' layer distinguishing the area 

associated with annual mean temperature exceeding 28°C at the baseline and traced its potential 

expansion under the two RCPs overlaid with corresponding uncertainty layers. This criterion, 
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however, was not used as an upper limit for transition to suboptimal or prohibitory conditions in the 

former steps. 

Results 

Single criterion classification 

Climatic conditions in the study area at the baseline and the ensemble projections for the four climatic 

criteria (separately classified) are presented in Figures 5 and 6. Largest projected shifts (expressed as 

proportion of the total studied area) are observed for the annual mean temperature and the intra-annual 

temperature distribution moving from baseline to the 20 year time window centered on 2030. 

Considering the annual mean temperature, 25.13 % of the total area (642416 km
2
 from 2556370 km

2
) 

is projected (21.79 % projected with full GCM consensus) to migrate from prohibitive and suboptimal 

range to classes more conducive to rubber cultivation under RCP 4.5. The RCP 8.5 ensemble 

projection suggests this figure to be 28.55 % (23.38 % with full agreement). For intra-annual 

temperature distribution, 20.18 % (16.59 % with full agreement) of the total area is observed to 

experience such a transition under RCP 4.5 and 23.96 % (17.67 %) under RCP 8.5 from baseline to the 

2030 period. Moving to 2050 and 2070 time periods, the emerging more suitable areas regarding the 

two aforementioned factors are of much smaller size and paired with higher degrees of uncertainty. 

The persistence of the new conditions in an area which has gone through climatic shift is relevant but 

not necessarily traceable in Sankey diagrams (Figure 5). Considering annual mean temperature under 

RCP 4.5, 14.17 % of the total area is projected with high certainty to remain in the new class after 

shifting from prohibitive to suboptimal or suboptimal to optimal range and 16.58 % under RCP 8.5. 

For the intra-annual temperature distribution, these figures are projected to be 14.17 % and 16.55 % 

respectively. Unlike temperature components of climate, the projected shifts observed in precipitation 

components were bilateral, associated with low certainty (i.e. high disagreement among GCMs) and 

smaller in size. The largest area projected to experience shifts in the precipitation class by 2030 was 

observed for intra-annual precipitation distribution summing to 7.02 % of the total investigated area 

(6.01 % moving from prohibitive to suboptimal or suboptimal to optimal and 1.01 % vice versa). 

80.63 % of it (equal to 5.66% of the total area) has been projected by mere majority (i.e. the lowest 

possible certainty level). 

Comparing single criterion GCM projections with their corresponding ensembles (Table 2) reveals 

that ACCESS1.0 has returned the closest single criterion maps to the ensemble with an average 

overlap of 92.42 % across all 24 possible criterion-RCP-time period combinations followed by 

BCC_CSM1.1, MPI-ESM-LR and CCSM4. 
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Figure 5 Baseline and projected single criterion climatic class dynamics maps 
The classification dynamics for the climatic criteria considered in this study cover baseline and the ensemble future projections. Each panel contains seven (1+3+3) layers of information: suitability 

class at the baseline (×1), projected class shifts between the four time sections (×3), and the strength of the ensemble majority suggesting the change/no-change (×3). Please view this figure in 

original resolution and consult the usage guide provided in the supplementary material (figure S10) for clarifications. Maps were generated in ArcGIS 10.2.2 and visually optimized in Inkscape 9.2. 
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Figure 6 Baseline and projected single criterion climatic class dynamics 
The classification dynamics for the area associated with the climatic criteria considered in this study at the baseline (2000) 

and the ensemble future projections correspond to the maps presented in figure 5. For more details on the use of Sankey 

diagrams in illustration of geographic shifts, view the dedicated article: Cuba (2015). Sankey charts were produced in D3.js 

JavaScript library (Bostock et al 2011) and visually optimized in Inkscape 9.2. 

Aggregate classification 

The geographical and temporal dynamics of the projected climatic suitability classes at the aggregate 

level are illustrated in figures 7 and 8. The area projected to retain its aggregate climatic class across 

the investigated time span (by 2070) is projected to be 72.83% of the total area under RCP 4.5 and 

66.23% under RCP 8.5. By the time window centered on 2050 these projections sum to 74.98% and 

72.89% and by 2030 to 77.63% and 78.22% of the total area respectively. From the total projected 

class-shifting area by 2030, 26.78% (6.01% of the studied area) was projected with maximum 

certainty (i.e. full agreement among GCMs in all four criteria) under RCP 4.5 and 26.50% (5.77%) 

under RCP 8.5. It was projected to decline to 14.09% (3.53%) and 17.39% (4.71%) for the baseline to 

2050 time period and further reduction to 9.49% (2.58%) and 7.10% (2.40%) for 2070 respectively. 

Performance similarity of single GCM aggregate classification maps with the ensemble is presented in 

table 3 where ACCESS1.0 returned the closest results to the ensemble. 
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Table 2 Classification agreement between the single criterion climatic data simulations and their ensemble 

Criteria RCP Period 
    Climatic data simulations     

AC BC MP CC NO MG IP HE GF 
A
n
n
u
a
l 

p
r
e
ci
p
it
a
ti
o
n
 

4.5 

2030 93.9 91.2 93.7 89.6 89.8 90.3 94.7 88.1 85.8 

2050 93.7 94.6 91.5 91.7 89 89.1 90.1 90.7 88.0 

2070 92.6 85.7 91.1 93.8 83.2 92.8 90.5 86.7 91.7 

8.5 

2030 94.0 88.7 91.1 88.8 88.8 89.7 92.7 88.5 84.6 

2050 93.2 92.7 90.0 92.2 90.6 87.6 89.1 88.1 84.7 

2070 89.2 84.1 88.6 89.6 85.9 92.5 87.2 83.2 89.1 

In
tr

a
-a

n
n
u
a
l 

p
r
ec

ip
it
a
ti
o
n
 

d
is
tr

ib
u
ti
o
n
  

4.5 

2030 90.5 85.0 91.0 84.7 89.5 92.6 88.2 92.5 79.1 

2050 91.1 88.6 87.8 87.0 89.6 90.7 86.3 87.7 85.4 

2070 90.4 81.1 89.2 89.7 84.5 87.3 87.1 89.2 87.1 

8.5 

2030 92.4 87.2 90.6 88.0 89.3 83.6 75.2 88.2 86.3 

2050 92.6 83.3 90.7 88.1 79.4 91.6 72.5 83.3 88.0 

2070 91.7 87.5 86.2 86.4 81.9 87.9 64.7 84.0 82.5 

A
n
n
u
a
l 
a
v
e
r
a
g
e
 

te
m

p
e
r
a
tu

re
 

4.5 

2030 91.5 99.2 82.3 91.3 92.2 90.3 87.5 90.1 86.4 

2050 91.2 99.3 89.0 91.9 93.6 88.7 88.6 85.4 80.8 

2070 81.5 99.2 86.4 95.9 92.8 90.7 86.3 73.2 77.0 

8.5 

2030 96.6 96.5 97.8 92.2 87.3 85.0 90.2 89.5 93.4 

2050 91.6 95.7 98.8 90.3 89.1 80.7 86.9 85.5 87.8 

2070 92.1 93.7 98.6 86.2 85.5 78.0 87.6 80.6 89.7 

In
tr

a
-a

n
n
u
a
l 

te
m

p
e
r
a
tu

r
e
 

d
is
tr

ib
u
ti
o
n
  

4.5 

2030 97.0 96.1 92.4 98.2 96.1 95.0 94.7 96.7 94.0 

2050 96.0 96.5 92.2 97.4 96.4 93.3 96.0 93.3 90.8 

2070 90.5 96.6 92.1 97.7 96.1 92.8 95.2 86.8 88.8 

8.5 

2030 95.7 95.8 97.0 98.6 94.7 93.6 96.5 93.9 96.7 

2050 94.6 93.5 97.3 96.1 94.3 89.9 96.1 92.3 93.7 

2070 94.4 95.2 98.7 94.7 93.5 88.9 96.4 91.1 95.6 

Resemblance of the climatic classification by each of the nine simulations used in this study with their ensemble is expressed 

as proportion (%) of the sum of the areas with matching classification to the total area. Color-code reflects five levels: below 

75%, 75 - 90%, 90.1 - 95%, 95.1 - 99% and above 99%. Maximum and minimum of each row are underlined. Nine IPCC 

AR5 simulations of representative concentration pathways RCP 4.5 and RCP 8.5 were used, here abbreviated as AC: 

ACCESS1.0 (Bi et al 2013, Dix et al 2013), CC: CCSM4 (Gent et al 2011), IP: IPSL-CM5A-LR (Dufresne et al 2013), NO: 

NorESM1-M (Bentsen et al 2013), GF: GFDL CM3 (Donner et al 2011), BC: BCC_CSM1.1 (Xin et al 2013), MG: MRI-

CGCM3 (Yukimoto et al 2012), MP: MPI-ESM-LR (Giorgetta et al 2013) and HE: HadGEM2-ES (Martin et al 2011). Each 

time period corresponds to a 20 year (averaged) time section centered on the mentioned year. GCMs are rank-sorted from left 

to right by their overall resemblance to ensemble.  

 

Restricting the investigated time window to the 20 year period centered on 2030 and the area to where 

climatic conditions are projected with high (the upper two levels) certainty to shift from prohibitive to 

rubber cultivation to suboptimal or optimal, our projections detected 195928 km2 (7.70% of the total 

investigated area) under RCP 4.5 and 238734 km
2
 (9.38%) under RCP 8.5 which are presented in 

Figure 8. Using Grouping Analysis we detected eight major clusters based on land use composition, 

physiographic attributes and proximity. Northernmost potential expansion was projected to verge on 

27°N of the Irrawaddy basin and the altitudinal limit to exceed 1400 m a.s.l. in clusters 7 (Bilauktaung 

range Thailand-Myanmar border between 15.56 °N and 18.10 °N) and 8 (Cardamom Mountains of 

Cambodia) (Figure 9). The overall baseline state of biodiversity in these clusters is presented in figure 

10 using the biodiversity intactness index (BII). Steffen et al (2015) have proposed a safe limit value 

of 0.9 (maximum 10% decline) for BII. The largest cluster (cluster 1) corresponding to Guangxi 

Autonomous Region of China and Northern Vietnam is the most ecologically degraded and 

accommodates 92.47% of the area already below the safe threshold. 
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Figure 7 Aggregate climatic classification maps 
Panels (a) and (d) reflect four (1+3) layers of information: the aggregate suitability class at the baseline (×1) and the projected 

class shifts between the four time sections (×3). Panels (b) and (e) demonstrate the strength of the ensemble majority 

suggesting the change/no-change (×3) between temporally adjacent time sections. Aggregate classification layers (a) and (d), 

and the corresponding uncertainty layers (b) and (e) are overlaid to produce panels (c) and (f). Please view this figure in 

original resolution and consult the usage guide provided in the supplementary material (figure S10) for clarifications. 

Maps were generated in ArcGIS 10.2.2 and visually optimized in Inkscape 9.2. 
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Figure 8 Baseline and projected aggregate climatic suitability dynamics 
Baseline (2000) classification and future projections for three time sections under two IPCC AR5 representative 
concentration pathways 4.5 and 8.5 are reflected proportional (%) to the total investigated area. Inter-nod connections (flows) 

smaller than 0.05 % are not demonstrated. For more details on the use of Sankey diagrams in illustration of geographic shifts, 

view the dedicated article: Cuba (2015). Sankey diagram was produced in D3.js JavaScript library (Bostock et al 2011) and 

visually optimized in Inkscape 9.2. 

 

Table 3 Classification agreement between the data simulations and their ensemble at the aggregate level 

RCP Period 
Climatic data simulations 

AC CC BC MP NO MG GF HE IP 

4.5 

2030 90.22 88.27 89.60 85.82 90.66 85.92 78.39 89.99 89.89 

2050 92.48 88.77 92.30 83.26 90.90 85.61 82.34 85.76 89.00 

2070 89.39 93.02 87.31 86.32 88.76 86.11 84.45 81.24 87.45 

8.5 

2030 92.87 89.35 88.20 90.73 89.27 84.20 84.89 83.19 76.61 

2050 91.20 88.66 87.58 91.69 82.76 87.11 86.60 79.35 74.54 

2070 91.21 88.41 88.57 88.06 83.26 84.48 82.52 78.32 65.90 

Resemblance of the aggregate climatic classification by each of the nine simulations used in this study with their ensemble is 
expressed as proportion (%) of the sum of the areas with matching classification to the total area. Color-code reflects five 

levels: below 75%, 75 - 80%, 80.1 - 85%, 85.1 - 90% and above 90%. Nine IPCC AR5 simulations of representative 

concentration pathways RCP 4.5 and RCP 8.5 were used, here abbreviated as AC: ACCESS1.0 (Bi et al 2013, Dix et al 

2013), CC: CCSM4 (Gent et al 2011), IP: IPSL-CM5A-LR (Dufresne et al 2013), NO: NorESM1-M (Bentsen et al 2013), 

GF: GFDL CM3 (Donner et al 2011), BC: BCC_CSM1.1 (Xin et al 2013), MG: MRI-CGCM3 (Yukimoto et al 2012), MP: 

MPI-ESM-LR (Giorgetta et al 2013) and HE: HadGEM2-ES (Martin et al 2011). Each time period corresponds to a 20 year 
(averaged) time section centered on the mentioned year. GCMs are rank-sorted from left to right by their overall resemblance 

to ensemble. 

 

Page 14 of 26AUTHOR SUBMITTED MANUSCRIPT - ERL-104888.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

15 

 

 

Figure 9 Areas projected with high certainty to become climatically suitable for rubber cultivation by 

2030  
Land use composition (Hoskins et al 2016), physiographic composition (USGS GTOPO30) and biodiversity intactness index 

(BII) (Newbold et al 2016) were used to group the parts of the study area which were projected with high ensemble 

consensus to become climatically suitable for rubber cultivation into eight clusters using the Grouping Analysis tool of 

ArcGIS 10.2.2. Violin plots (bottom panel) were generated using the 'ggplot2' 2.1.0 R package and visually optimized in 

Inkscape 9.2. Terms primary and secondary habitat represent 'undisturbed natural' and 'recovering, previously disturbed 
natural' habitats respectively. Variables shown above are adjusted to share zero mean and unit variance. For original scale, 

please see supplementary material figures S4 to S6. 
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Figure 10 Biodiversity Intactness Index in high certainty shift zones 
Biodiversity intactness index (BII) from Newbold et al (2016) extracted for Areas projected with high certainty to become 

climatically suitable for rubber cultivation by 2030. See supplementary material figure S2 for complete frame coverage. 
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Exposure to excessive heat  

Projected exposure to annual mean temperature levels exceeding 28°C in the study area is presented in 

figure 11. Based on WorldClim data, total baseline area with this characteristic is limited to 14570 km2 

(less than 0.6 % of the total investigated area) located between 12.33 °N, 100°E and 16.33 °N, 101.50 

°E in Thailand. Ensemble projections based on 7/9 to 9/9 majority classification suggest that by 2030, 

under RCP 4.5 this area may increase 25 fold (14.3% of GMS) and 35 fold (20.5% of GMS) under 

RCP 8.5 stretching northwards to 22°N in the central parts of the Irrawaddy basin. By 2050 however, 

this criterion may be associated with 23.2% of the total area under RCP 4.5 and 31.2 % under RCP 8.5 

increasing respectively by 2070 to 26.5% and 38.9%. 

 

Figure 11 Baseline and projected extent of the exposure to mean annual temperature above 28°C 
Each panel contains seven (1+3+3) layers of information: exposure to mean annual temperature above 28°C at the baseline 

(×1), projected shifts between the four time sections (×3), and the strength of the ensemble majority suggesting the shift/no-
shift(×3). Please view this figure in original resolution and consult the usage guide provided in the supplementary material 

for clarifications. 
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Discussion 

Contrasts and conjunctions with comparable studies 

Zomer et al (2014) conducted a study focusing on the potential changes in the area conducive to 

rubber cultivation in Xishuangbanna, Yunnan, China using environmental stratification while 

averaging all four AR5 RCPs which suggested an increase from 33.5% to 74.5% of the total prefecture 

area by 2050. Our findings for the same temporal and spatial frame are 52.5% (43.7% with high 

certainty) under RCP 4.5 and 83.1% (60.1%) under RCP 8.5. Ray et al (2016a, 2016b) used MaxEnt 

ecological niche modeling tool exploring the rubber producing Western Ghats and the North-East 

regions of India and noted a substantial attachment of the projection outcome to the region used for 

calibration.  If Amazonia was used for model calibration, only a very limited southern part of Western 

Ghats was returned as suitable by MaxEnt while established rubber growing regions were left out. 

They observed the same limited transferability pattern while calibrating MaxEnt with each of two 

Indian rubber producing regions projecting for the other, one at a time. They reached plausible 

projections only by pooled occurrence points for parameter estimation. Ahrends et al (2015) 

investigated the expansion trends of rubber cultivation in roughly the same geographical frame as this 

study and concluded that this land use is stretching into increasingly less suitable zones jeopardizing 

biodiversity and landscape functions. They included a typhoon damage risk assessment based on 

historical tropical cyclone tracks which, when compared with the area projected with high certainty in 

this study to become climatically conducive to rubber cultivation by 2030, suggests current typhoon 

risk zones to overlap only with parts of clusters one (13.2%) and three (2.2%). This overlapping area 

in cluster one is limited to a 50 km inland buffer of the Guangxi coastline between 106.50°E and 

109.66°E. Recent studies on the influence of climate change on western North Pacific tropical cyclone 

tracks however project reductions in both frequency and intensity of typhoons in future for our area of 

interest mainly due to northward diversion (Colbert et al 2015, Kossin et al 2016, Zhang and Wang 

2017). Liu et al (2015) projected the change in the area with potential for Para rubber cultivation in 

China covering all five provinces with rubber cultivation background (Hainan, Yunnan, Guangdong, 

Guangxi and Fujian) using ecological niche modeling to and reported a 15% increase by 2050 from 

about 400000 km
2
 in 2010. 

With the exception of cluster 1, which encompasses a major biotically compromised (BII<0.9) area 

share, most of the regions projected to gain climatic potential for rubber cultivation are chiefly 

composed of intact primary habitats (figure 10 and supplementary material figure S4). In these areas 

land use modifications of significant scale require serious attention to the potential impacts on the 

ecological integrity and ecosystem functions and services. The ongoing improvements in the scientific 

understanding and practice of concepts such as rubber based agroforestry systems (Langenberger et al 

2017) and Green rubber eco-certification (Kennedy et al 2017) offer promising options for 
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environmentally friendly rubber cultivation, particularly as support from smallholder side for 

participation in ecosystem protection appears to grow (Min et al 2018, Wigboldus et al 2017). 

Strengths and limitations of the projection approach 

Hevea brasiliensis is not only a plant and therefore a sessile species but also a crop subject to non-

natural sources of influence (e.g. breeding and crop management), which may affect the reliability of 

species distribution models if based on biased presence and pseudo-absence records. From our point of 

view rule-based models tend to be less prone to circular reasoning but risk engaging non-accurate 

classification rising from misestimated or dated  tolerance thresholds (e.g. due to breeding). 

We chose to assign equal weights to the climatic criteria involved in this study, and also to the GCMs 

forming the ensemble single criteria layers. However, we acknowledge that a non-equal weight 

approach based on justified quantification of the influence associated with each criterion or its 

ensemble projection homogeneity (in case of GCMs, based on data quality) is plausible.  

Non-climatic factors (e.g. soil conditions, land physiography, labor and market access) which are 

known to be decisive in suitability for rubber cultivation were not involved in this study. Coverage of 

a broad range of suitability determining factors in a single study faces serious technical challenges. 

Different variables can often not be processed with a general approach as the scale relevant for some 

factors may not necessarily match the scale suitable for the others. The availability and quality of data 

in a standardized form are also two crucial limiting features. However, some factors relevant in 

smaller scale (e.g. soil properties) can be nested in those relevant in larger scale (e.g. climatic 

conditions) by subsequent localized assessments. This requires the provision of the outputs of studies 

such as this in a modular form exploitable for third parties. The KMZ files accompanying this 

manuscript do not only provide the findings unchained from resolution loss, but can also be used by 

future studies as a base to expand upon.  

Although recent trajectories of GHG emissions are closest to the RCP 8.5 (supplementary material 

figure S7), this climate change scenario incorporates some assumptions concerning the use of fossil 

energy resources which are in the long-run technically improbable (Capellán-Pérez et al 2016, Ritchie 

and Dowlatabadi 2017a, 2017b, Wang et al 2017). In view of the concerns and evidence regarding 

rapid changes in land use and climate, it is counterintuitive to use the early years of the last decade as 

baseline. Nevertheless, most required underlying data components are being revised not with emphasis 

on updating but on resolution (e.g. Newbold et al. 2016) or precision (e.g. Fick and Hijmans 2017). 

Compared with the lower temperature tolerance limits known for Para rubber, upper thresholds and 

consequences of exposure to high levels of ambient temperature are not well understood. The global 

area already exposed to annual mean temperature above 28° C (supplementary material figure S9) 

does not match typical rubber growing regions. In case of the GMS, a comparison between figures 2 
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and 11 underlines this point. Mesocosm experiments (Stewart et al 2013, Bestion et al 2015, Fordham 

2015) and other manipulation methods which have recently gained prominence in studies aiming at a 

better understanding of the responses of the organisms to a warming climate can illuminate the way 

for H. brasiliensis as well.  

The methods developed in this article are applied to a relatively restricted case study, rubber 

cultivation in the GMS. Nevertheless, the potential for transferability to other world regions and other 

cropping systems is very high, as the vast majority of datasets used is freely available for scientific 

purposes. The phenological and physiological crop specific background data for other crop plants can 

be collected from text books and literature reviews. Potential applications that come to mind might be 

the potential suitability for oil palm plantation systems, coffee agroforestry or bio-economically 

important crops such as sugar cane and maize and its´ potential northern distribution limits.  

In order to broaden the audience of this study and to facilitate the use of its outputs for potential 

decision makers, we have produced two KMZ files (one for each RCP) which summarize the 

information behind figures 5, 7 and 11, covering the baseline and the 2030s time windows. These files 

can easily be loaded in Google Earth™ to check the conditions for a given location by clicking. 

Conclusion 

Even though the climatic change in the GMS is projected to be predominantly in the direction of 

higher suitability for rubber cultivation, the expansion of climatically optimal area is projected to be 

minimal. When including the exposure to annual mean temperatures exceeding 28°C (current estimate 

of excessive heat for Hevea rubber), as a limiting factor, then even a heavy reduction in the total 

climatically optimal area is likely to occur (see figure 8). 

Across the time span investigated in this study (limited to 2070), about half of the new area with 

climatic potential for rubber cultivation is projected to emerge by 2030, near half of which is 

ecologically pristine (see figure 10). This pattern, in combination with factors encouraging rubber 

cultivation in higher altitudes and latitudes underscores the urgency and importance of careful future 

land use planning. Local and regional decision-makers can use mid- to (more cautiously) long-term 

assessment such as this to develop policy guidelines and decision support mechanism that can take the 

occurrence of potential new land use and land management systems into account. Either to prepare a 

certain region for potential innovations regarding the demands to local infrastructure, or to put 

necessary guidelines and rules into place to “soften the blow” these innovations might have on 

traditional systems or biodiversity and nature conservation.  
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