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Ultisols, widely distributed in tropical and subtropical areas of south China, are suffering from serious
water erosion, however, slope hydrological process for Ultisols under different erosional degradation
levels in field condition has been scarcely investigated. Field rainfall simulation at two rainfall intensities
(120 and 60mm/h) were performed on pre-wetted Ultisols with four erosion degrees (non, moderate,
severe and very-severe), and the hydrological processes of these soils were determined. The variation of
soil infiltration was contributed by the interaction of erosion degree and rainfall intensity (p o 0.05). In
most cases, time to incipient runoff, the decay coefficient, steady state infiltration rate, and their varia-
bility were larger at the high rainfall intensity, accelerating by the increasing erosion severity. Despite
rainfall intensity, the infiltration process of Ultisols was also significantly influenced by mean weight
diameter of aggregates at the field moisture content, soil organic carbon and particle size distribution (R2

4 30%, p o 0.05). The temporal erodibility of surface soil and soil detachment rate were significantly and
negatively correlated with infiltration rate (r o -0.32, p o 0.05), but less significant correlation was
observed between sediment concentration and infiltration rate for most soils, especially at the high
rainfall intensity. The variation of surface texture and soil compactness generated by erosion degradation
was the intrinsic predominant factors for the change of infiltration process of Ultisols. The obtained
results will facilitate the understanding of hydrological process for degraded lands, and provide useful
knowledge in managing crop irrigation and soil erosion.
& 2019 International Research and Training Center on Erosion and Sedimentation and China Water and
Power Press. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rainfall infiltration is a process that water runs into the soil and
leads to an increased total moisture content, contributing to the
variation of water partitioning and hydrologic response, and
changes the development and recurrence frequency of erosion
process (Lu, Zheng, Li, Bian, & An, 2016; Shakesby, Doerr, & Walsh,
2000; Walker, Walter, & Parlange, 2007). To better understand the
hydrological and erosion mechanism in tropical and subtropical
areas, rainfall infiltration pattern and process should gain more
consideration in those regions where precipitation is the dominant
source for soil erosion.

The process of rainfall infiltration is controlled by several factors,
including geomorphology, rainfall or climatic properties, surface
g Center on Erosion and Sedimenta
nse (http://creativecommons.org/li
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Power Press.
roughness, soil porosity or density, organic carbon content, size
and stability level of the aggregates, and soil hydraulic properties
(Mohamadi & Kavian, 2015; Morbidelli, Saltalippi, Flammini, &
Govindaraju, 2018). These factors consequently interfere on runoff.
Prior research generally confirmed that land cover significantly af-
fects infiltration, reducing the direct impact of raindrops on the soil
(Almeida et al., 2018). Soil surface roughness, porosity and infiltra-
tion decrease due to the limited plant canopy or residue cover for
bare soils, causing the increase of runoff and intensification of the
erosion process. Widely accepted that, the formation of surface
crust is the predominant process influencing soil infiltration during
the rainfall, especially for bare lands (e.g., Assouline, 2004; Durán
Zuazo & Rodríguez Pleguezuelo, 2008; Le Bissonnais et al., 2005;
Podwojewski et al., 2011). Soils with low aggregate stability but
high dispersivity form a surface crust much more readily, resulting
in the development of a dense, thick and less permeable surface
structure (Le Bissonnais, 1996; Rodrigo Comino et al., 2016).

A consensus on an explanation for the influence of rainfall in-
tensity on infiltration rate could be hardly obtained in literatures,
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and reversed results have been reported in prior publications (e.g.,
Assouline & Ben-Hur, 2006; Liu, Lei, Zhao, & Yuan, 2011). High
rainfall intensity accelerates the dispersion and breakdown of
aggregate, facilitating the formation of surface seal. However, an
increase in rain intensity lead to a higher transportability of flow,
enhancing the mobility the detached particles carried away out of
the test area. Briefly, the variation of land surface condition gen-
erating the change of infiltration pattern and process should be
controlled by the comprehensive effects of rainfall character and
the stability of soil structure.

Water erosion, as the most predominant erosion type in
tropic and sub-tropic areas, encompasses infiltration, percola-
tion and retention under rainfall (Bossio, Geheb, & Critchley,
2010). Bare lands resulted from erosional degradation are widely
distributed around the world, creating severe limitations to the
sustainability of natural ecosystems and agricultural activities
(García-Ruiz, Beguería, Lana-Renault, Nadal-Romero, & Cerdà,
2017; Gonzalez, 2018; Podwojewski et al., 2011). Land degrada-
tion results in the reduction of water productivity, availability,
quality and storage at field and landscape scales (Lal, 2001), and
caused the deterioration of soil physical, chemical and hydro-
logical process (Bhan, 2013; Le Bissonnais et al., 2005). The re-
duction of water productivity, availability, quality and storage,
the deterioration of soil physical, chemical and hydrological
process generated by land degradation are the chronic problems
particular for the tropic and sub-tropic areas. Soil thickness de-
clines in various degrees and even has the parent material hor-
izons exposed during the intensification of soil erosion process
(Zhang, Yang, & Zepp, 2004). It is traditionally recognized that
pedogenic differentiation, including aggregate stability, porosity,
density and organic matter et al., leads to the heterogeneity of
soil properties in different horizons (e.g., Rejman, Turski, & Pa-
luszek, 1998; Wu, Cai, Wang, Wei, & Wang, 2016). The variability
of soil properties resulted from degradation would definitely in
turn alters the soil infiltration process (e.g., Assouline, 2004;
Carmi & Berliner, 2008; Malvar, Martins, Nunes, Robichaud, &
Keizer, 2013).

Most of the existing studies about the correlation between in-
filtration, soil loss, and surface condition have been performed on
small plots with rainfall simulation in laboratory (Cerdà, 1999;
Huang, Wu, & Zhao, 2013), but crust formation generated by
raindrop impact under natural field conditions is significantly
different from crusting in disturbed soil samples in laboratory
(Abudi, Carmi, & Berliner, 2012). Ultisols, as the representative
quaternary red clay soils in subtropical and tropical regions of
central-south China, suffer from serious water erosion. However,
few research has been conducted to investigate the infiltration
process of Ultisols under different erosion-induced degradation
degrees, particular at the field condition.

In accordance with the aforementioned background, this study
aims at (i) characterizing the temporal variation of rainfall in-
filtration process under various erosion-induced degradation de-
grees at two contrasting rainfall intensities, and (ii) identifying the
key physicochemical parameters that account for the dynamic
infiltration response indexes. To end this, field plot rainfall simu-
lation experiments were conducted on bare Ultisols with four
erosion degrees (non, moderately, severely and very severely
eroded) pursuant to the outcrop of eluvium, illuvium and parent
material horizons. The obtained results will supplement the
knowledge of soil hydrological process of the degraded lands in
water erosion dominated regions.
2. Materials and methods

2.1. Experimental sites and soils

Ultisols, derived from quaternary red clay, are the representative
soils in subtropical and tropical regions, which occupies 16% of the
total areas in China (Fig. S1) (Gao, Li, & Zhou, 1998). East Asian
Monsoon climate with the rainy season coinciding with high tem-
perature dominates the climate in these regions. Hilly land with a
relative elevation of 10–60m and a gentle slope (o 15°) is the main
farmland resource in these areas, and the intensive cultivation
makes the soils here are prone to erosion. Water erosion has been a
great threat to land productivity and environment protection.

In accordance with the principle of typicality of soil types and
accessibility of field rainfall simulation, Ultisols were selected from
the north of Changsha city (28°30′N, 112°54′E), Hunan Province,
China (Fig. 1-a). The mean annual precipitation and temperature in
this area is 1422mm and 17 °C, respectively. Field plots suffering
from different water erosion degrees were selected according to
the outcrop the pedogenic horizons (Rejman, Turski, & Paluszek,
1998): soil profile with the intact eluvial horizon (A) was in a non-
erosion degree (E0); soil profile with the outcrop of illuvial hor-
izons, B1 and B2, was in the moderate (E1) and severe (E2) erosion
degree, respectively; soil profile with the outcrop of parent ma-
terial horizon (C) was very severely eroded (E3) (Fig. S2). Char-
acteristics of each horizon were summarized in Table 1. Before the
installment of field plot, top soil layers (about 1–3 cm thickness)
with roots and organic residues were removed to avoid the in-
terference of vegetation impacts. The basic information of Ultisols
with different erosion degrees was summarized in Table 2.

2.2. Measurement of rainfall infiltration

Soil infiltration generated by rainfall was determined by field
plot rainfall simulation experiments. Field plots for rainfall simu-
lation were equally in an area of 2.40m2 (length 3.00m � width
0.80m) and at a slope of 10° (the representative slope gradient in
this region) (Fig. 1-b). Two repetitions were performed due to the
intensive labor and the capture area of the portable rainfall si-
mulator. Big clods (o 3 cm) in the surface layer (o 5 cm) were
crushed to simulate the cropland condition. Besides, the plots
were presaturated for the consistency of the antecedent water
condition, and the raindrop energy was retard with a 2-mm wire
screen suspended 0.10m above the soil surface. The rainfall ex-
periment was conducted after 12 h of the runoff generation.

Rainfall simulator with a SPRACO cone jet nozzle was installed
at a height of 5.0m above the center of the plots to obtained a
natural raindrop energy when rain drops approached soil surface
(Luk, Abrahams, & Parsons, 1986). In accordance with the re-
presentative and common rainstorms in study area, two rainfall
intensities (60 and 120mm/h) were designed. Rainfall simulation
was continued for 1 h after runoff initiation. Runoff and sediment
were collected at 3-min intervals after runoff generation for
measurement of runoff volume (L) and soil loss (g). Infiltration was
determined by difference from runoff and rainfall intensity.

Infiltration rate (f) was calculated by difference between rain-
fall intensity and runoff rate. The infiltration curves were fitted by
the Horton (1941):
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where, f0 and fc are the initial and steady state infiltration rate,
respectively (mm/min); k is the Horton's decay coefficient; Tr is
the time to incipient runoff (min); T is the rainfall duration (min).



Fig. 1. Location of experimental sites (a), and field experiment components (b).

Table 1
Basic information of the selected Ultisols.

ED Horizon Dry color Land use Soil structure Soil description

E0 A 7.5YR 6/6 forest land granular, loose-well
aggregated

high organic matter content and biological activity with a large amount of roots and plant
residues

E1 B1 7.5YR 6/6 grassland tight blocky structure high contents of iron-manganese cutans and
concretions

large amount of roots and plant
residues

E2 B2 wasteland without root and biological activity
E3 C 7.5YR6/8–5YR 4/6 bare land tight-massive clod structure red-white reticulated mottling horizon and heavy texture

Note: ED, erosion degree; E0, E1, E2 and E3 denote no, moderate, severe and very severe erosion degrees, respectively.

Table 2
Soil physicochemical properties in different erosion degrees (mean 7 standard deviation).

ED ρ SOC (%) γ (g/cm3) wo (g/g) NP CP Sand Silt Clay MWDFM (mm)
(cm3/cm3) (%)

E0 2.70 7 0.00 2.59 7 0.01 1.13 7 0.06 0.34 7 0.03 0.16 7 0.03 0.43 7 0.02 7 7 1 42 7 1 51 7 0 2.80 7 0.34
E1 2.72 7 0.01 0.28 7 0.01 1.31 7 0.02 0.30 7 0.01 0.10 7 0.02 0.42 7 0.01 5 7 0 44 7 0 52 7 0 3.50 7 0.39
E2 2.73 7 0.01 0.18 7 0.02 1.31 7 0.02 0.30 7 0.00 0.09 7 0.01 0.42 7 0.01 5 7 0 42 7 0 53 7 0 2.60 7 0.14
E3 2.74 7 0.01 0.06 7 0.00 1.56 7 0.01 0.23 7 0.01 0.05 7 0.02 0.38 7 0.01 6 7 0 39 7 3 55 7 3 4.43 7 0.51

Note: ED, erosion degree; E0, E1, E2 and E3 denote no, moderate, severe and very severe erosion degrees, respectively; ρ, particle density; SOC, soil organic carbon; γ, bulk
density; wo, field moisture content; NP and CP, non-capillary and capillary porosity; Sand, 2–0.05mm; Silt, 0.05–0.002mm; Clay, o 0.002mm; MWDFM, mean weight
diameter of aggregates at the field moisture content.
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2.3. Data analysis

Statistical tests and figures were performed using the software
of SPSS 20.0 (SPSS Inc, Chicago, IL, USA) and OriginPro 2016, re-
spectively. The differences in soil infiltration among different
treatments (erosion degree, and rainfall intensity) were analyzed
at p o 0.05. Shapiro-Wilk statistics were conducted for the nor-
mality tests of all dependent and independent variables. Normality
tests were carried out for all dependent and independent variables
using Shapiro–Wilk statistics. The variables not conforming to
normal distribution were transformed by natural logarithmic
treatment. Soil properties accounting for the majority of soil
infiltration responses were selected by stepwise multiple linear
regression analysis (Xue, 2013).
3. Results

3.1. Rainfall infiltration process

The temporal variations in rainfall infiltration rate for Ultisols
under different erosion degrees and rainfall intensities were depicted
in Fig. 2. Time to incipient runoff (Tr) was evidently larger at the low
(8.68–15.13min) than at the high rainfall intensity (0.78–6.84min),



Fig. 2. Temporal variations of soil infiltration rate in different erosion classes (no (E1), moderate (E2) and very-severe (E3)) and at two rainfall intensities (60mm/h (LR) and
120mm/h (HR)).

Y. Wei et al. / International Soil and Water Conservation Research 7 (2019) 167–175170
and Tr at the low was around 11 times of that at the high rainfall
intensity for noneroded soils (E0) (Fig. 4-a). Additionally, time to in-
cipient runoff generally increased with the increased erosion severity
especially at the high rainfall intensity. The difference of Tr between
two filed plots seems to be increased with erosion severity, despite
the non-eroded soils. Statistically, time to incipient runoff varied
significantly with soil erosion degree and rainfall intensity (p o 0.01).
After runoff generation, soil infiltration rate decreased sharply
after runoff generation, followed by a steady state with continuing
rainfall duration. However, infiltration rate at the steady state
showed apparent fluctuations, particular for soils at the high
rainfall intensity. The temporal variations of infiltration rate were
generally gentler at the low than at the high rainfall intensity.
Similarly, the difference of temporal rainfall infiltration rate in two



Fig. 3. Boxplots of soil infiltration rate during the rainfall for different types of soils.
HR, high rainfall intensity (120mm/h); LR, low rainfall intensity (60mm/h); E0 ¼
no erosion; E1 ¼ moderate erosion; E2 ¼ very severe erosion; E3 ¼ very severe
erosion. The boxes indicate the 25th and 75th percentiles; the line in the box in-
dicates the median (50th percentile); “� ” indicates outlier values; “□” indicates
average value.

Fig. 4. Parameters of Horton models including (a) Time to incipient runoff (Tr),
(b) decay coefficient k and (c) steady state infiltration rate (fc) in different erosion
classes (no (E1), moderate (E2) and very-severe (E3)) and at two rainfall intensities
(60mm/h (LR) and 120mm/h (HR)).
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field plots was evidently larger for soils with the very severe
erosion degree (E3).

The effect of erosion severity on the temporal infiltration rate
varied with rainfall intensity (Fig. 3). The rainfall infiltration rate
showed a relatively larger variability at the high than at the low
rainfall intensity, e. g., infiltration rate of the non-eroded soils (E0)
at the high and low rainfall intensity was 2.03 and 0.75mm/min,
respectively. Besides, at the high rainfall intensity, the variability of
rainfall infiltration rate generally increased with increasing erosion
severity, but an opposite trend was observed at the low rainfall
intensity. Throughout the rainfall duration, the non-eroded soils
(E0) possessed a relatively lower infiltration rate among all the
tested soils, especially at the low rainfall intensity.

Infiltration process for most soil types was fitted well with
Horton's equation (Adj-R2 4 0.60, p o 0.05), and less satisfied
fitting results were observed for the very sever eroded soils. As
shown in Fig. 4-b, the decay coefficient k ranged between 0.03 and
1.17 for all the tested soils. Apart from the very severely eroded
soils (E3), decay coefficient was generally larger at the high than at
the low rainfall intensity. However, the difference of decay coef-
ficient between two parallel field plots was significant larger at the
low than at the high rainfall intensity, especially for the very se-
verely eroded soils (1.17–0.01). Collectively, the impact of land
degradation on the unsteady infiltration process varied with
rainfall intensity.

The infiltration rate at the steady state averagely increased with
increasing erosion severity, especially for field plot 1 at the high
rainfall intensity and field plot 2 at the low rainfall intensity
(Fig. 4-c). The difference of the steady state infiltration rate be-
tween the parallel treatments was obviously larger at the low
rainfall intensity, besides, the infiltration rate at the steady state
showed the maximum and minimum variability at field plots with
moderate (E1) and very sever (E3) erosion degree, respectively.

3.2. Identification of soil properties influencing rainfall infiltration
processes

Multiple stepwise regression results (Fig. 5) indicated that
rainfall infiltration process of Ultisols was significantly influenced
by rainfall intensity, mean weight diameter of aggregates at the
field moisture content, soil organic carbon and particle size dis-
tribution (p o 0.05). Specifically, rainfall intensity and clay content
with negative and positive effects on time to incipient runoff (Tr),
respectively, explained more than 80% of variance in Tr (Adj-R2 ¼
75%, p o 0.05). However, the variability of the time to incipient
runoff was largely depended on the sand content (p o 0.01). The
decay coefficient (k) with its variability determined by clay content
(R2 ¼ 75%, p o 0.01) was decreased by the increasing silt content
(R2 ¼ 56%, p o 0.01). The content of soil organic carbon and clay
fraction contributed to variation of the infiltration rate at the
steady state (fc) (Adj-R2 ¼ 79%, p o 0.01), besides, the variability
of fc was influenced by mean weight diameter of aggregates at the
field moisture content (R2 ¼ 82%, p o 0.01). Generally, the final
infiltration rate was determined by soil cement content and ag-
gregate stability.

Considering the significant effects of rainfall intensity on soil
infiltration rate, the relationships between rainfall infiltration
processes and the influencing factors were analyzed separately
under different rainfall intensities (Fig. 5-b and -c). At the high
rainfall intensity, clay content facilitated the increasing of the time
to incipient runoff (R2 ¼ 72%, p o 0.01) with its variability in-
creased by the interaction of sand content and aggregate stability
index (Adj-R2 ¼ 81%, p o 0.05); the variation of decay coefficient



Fig. 5. Standardized coefficients and R square of selected variables accounting for the Horton model parameters based on the all data (a), at the high rainfall intensity (b) and
at the low rainfall intensity (c).

Y. Wei et al. / International Soil and Water Conservation Research 7 (2019) 167–175172
(k) was dominated by sand content (R2 ¼ 0.62%, p o 0.001); clay
content (R2 ¼ 0.82%, p o 0.01) and mean weight diameter of ag-
gregates at the field moisture level (R2 ¼ 0.79%, p o 0.01) gener-
ated the variation and variability of the steady state infiltration
rate, respectively. At the low rainfall intensity, time to incipient
runoff was influenced by the interaction of clay content and mean
weight diameter of aggregates at the field moisture level (Adj-R2

¼ 81%, p o 0.05), but its variability was generated by silt content
(R2 ¼ 0.79%, p o 0.01); silt content (R2 ¼ 52%, p o 0.01) and the
mean weight diameter of aggregates at the field moisture level (R2

¼ 0.38%, p o 0.05) was negatively and positively correlated with
the decay coefficient (k), respectively; the variation of steady state
infiltration rate was determined by sand content (R2 ¼ 83%, p o
0.01). Collectively, clay and sand content dominated the major
variation of rainfall infiltration process at the high rainfall in-
tensity, but silt content contributed to the variation of rainfall in-
filtration process at the low rainfall intensity.
4. Discussion

According to this study, the variation rainfall infiltration rate
was generally changed into three parts: (i) keeping constantly
before runoff generation; (ii) declining sharply with rainfall
duration; (iii) obtaining a steady state finally. The rainfall in-
filtration process for bare soils was predominated by the variation
of surface soil properties and structures (Assouline, 2004; Carmi &
Berliner, 2008), which was intrinsically determined by the extent
of the breakdown and dispersion of soil aggregates under the in-
teracts of rainfall (intensity and duration) and surface structure
stability (Ran, Su, Li, & He, 2012). Ultisols suffering from different
land degradation degrees showed different infiltration processes,
altering the sediment transportability and concentration, and
hence, influencing the erosion process.

4.1. Effects of rainfall characteristics on rainfall infiltration process

During rainfall, the temporal infiltration process could be re-
duced by the formation and evolution of surface crusts (Carmi &
Berliner, 2008; Ran, Su, Li, & He, 2012). At the initial stage of
rainfall, soils possessed a high infiltration capacity, delaying the
time to incipient runoff; as rainfall continued, surface structure
was gradually compacted by the raindrop impact, especially at the
high rainfall intensity and high kinetic energy, and thus facilitated
the runoff generation but declined the infiltration (Shi, Yan, Li, Li, &
Cai, 2010), as the variation of time to incipient runoff showed in
Fig. 4-a. Simultaneously, high rainfall intensity usually contributed
to the breakdown of more aggregates and facilitated surface crust
formation and pore clogging (Lu, Zheng, Li, Bian, & An, 2016) (Fig.
S3), which could also explain the negative effects of rainfall in-
tensity on runoff generation (Fig. 5-a) and the decreased infiltra-
tion rate with rainfall duration (Fig. 2).

Surface crusting was formed by an in situ reorganization of
existing aggregates and dispersive fragments or sedimentary
crusts generated by particle transport and sorting (Le Bissonnais
et al., 2005). However, this process was influenced by the dual
contribution of rainfall intensity. High rainfall intensity disrupted
more soil aggregates (except the very severely eroded soils), fa-
cilitating the formation of surface crusts but it also possessed a
high sediment transport capacity. Therefore, different degrees of
surface crust formation during the continued rainfall duration
generated the various infiltration patterns in Fig. 2. Specifically, the
well-developed crusting leaded to a nearly constant infiltration
rate at the steady state, e.g., the quasi-steady state of infiltration
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rate of non-eroded soils (Fig. 2-a). Yet, the re-disrupted crust could
be transported by runoff, particular under the high runoff coeffi-
cient condition (Fig. S4). The transportability of runoff and the
detachment ability of rain drops collectively affected the variation
of surface structure and infiltration fluctuation.

4.2. Effects of soil properties on rainfall infiltration process

The variation of surface structure or crusting generated by the
mechanical breakdown and dispersion of aggregates for the pre-
wetted soils under the rainfall condition (Le Bissonnais, 1996; Shi,
Yan, Li, Li, & Cai, 2010). Apart from the rainfall intensity, soil
properties and surface soil conditions also made great contribu-
tions to the dynamic infiltration rate during rainfall events (As-
souline & Ben-Hur, 2006). Due to the different disruptive forces of
rainfall intensities, different soil properties were selected to ac-
count for the temporal infiltration rate at the high and low rainfall
intensity (Fig. 5). During rainfall, sediment transport by runoff
dominated the surface variation, indicated by particle size dis-
tribution (Kinnell, 2005). This was supposed to be the reason that
the content of clay, silt and sand fraction contributed to the var-
iation of infiltration process for Ultisols. Besides, the loos structure
(bulk density was in a range of 1.13–1.31 g/cm3) (Table 2) of the
non-eroded (E0), moderately eroded (E1), and severely eroded
soils (E2) soils facilitated the disintegration of soil particles and the
formation of structural crust (Le Bissonnais, 1996), and hence, the
tight density and low permeability of these crusts generated the
sharp decreasing of infiltration rate especially at high rainfall in-
tensity (Fig. 2-a–c). Likewise, the relative tight-blocky structure
(bulk density was around 1.56 g/cm3) and high mechanical
strength (mean weight diameter of aggregates at the field moist-
ure content was around 4.43mm) of the very severely eroded soils
(E3), accelerated its resistance to rainfall impact and runoff dis-
persion, resulting in a less susceptibility to breakdown (Misra &
Teixeira, 2001), which leaded to a relatively high infiltration rate
and less influence by rainfall duration (Fig. 2d). In addition, the
rough surface for the very severely eroded soils would reduce the
Fig. 6. Relationships of sediment concentration, soil erodibility, and soil detachment ra
rainfall intensity, respectively. * and ** represent the statistical significance at p o 0.05,
plot data rather than their average value (n ¼ 40).
detachment power and transport capacity of runoff, thus enabling
a higher infiltration (Prosdocimi et al., 2017).

4.3. Variation of soil loss influenced by erosion degree and rainfall
intensity

The hydrological process during rainfall is composed by in-
filtration and runoff, and the increased runoff or decreased in-
filtration contributes to increasing the sediment concentration
(e.g., Jin et al., 2008; Tadesse, Suryabhagavan, Sridhar, & Legesse,
2017). Though, most of the obtained results in this study were
consistent with this conclusion, the effect of infiltration on sedi-
ment concentration varied with erosion degree and rainfall in-
tensity (Fig. S5) (Fig. 6), e.g., sediment concentration was positively
correlated with infiltration rate for non (E0) and moderately (E1)
eroded soils at the high rainfall intensity, and for the very severely
eroded soils (E3) at the high and low rainfall intensity (p o 0.05).
The positive and non-significant correlations could be ascribed by
the variation of sediment transport form during erosion process
(Assouline & Ben-Hur, 2006; Kinnell, 2005; Mohamadi & Kavian,
2015). It was speculated that soil loss was predominated by de-
tachment-limited regime for the very severely eroded soils (E3)
and transport-limited form for the non (E0) and moderately (E1)
eroded soils at the high rainfall intensity (Kukal & Bawa, 2013).

In eroded inferior lands, soil was exposed to erosion once los-
ing the surface cover (Kirchhoff, Rodrigo-Comino, Seeger, & Ries,
2017). Surface crusts formed during rainfall induced erosion made
dual effects on soil loss: (1) impeding a further detachment of
raindrop and runoff to subsurface aggregate, which reduced in-
filtration and soil loss; (2) increasing the amount of runoff, which
momentarily improved the ability of detachment and transport for
overland flow. Widely accepted that, surface crusts facilitate par-
ticles compaction and clog soil pores, leading to a much lower
permeability of the crusted surface than that of the underlying
layers (Assouline, 2004), but crust formation reduces the infiltra-
tion rate, which increases runoff and accelerates the soil loss
(Durán Zuazo & Rodríguez Pleguezuelo, 2008). However, in this
te with infiltration rate. HR and LR indicate high (120mm/h) and low (60mm/h)
and 0.01, respectively. The relationship in each treatment was derived from the two
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study, a significant and negative correlation (p o 0.01) has been
observed between the temporal soil erodibility and infiltration
rate for all the tested soils (Fig. 6). It is noteworthy that, this po-
sitive correlation actually reflected the temporal influence of sur-
face crusting to soil erodibility. Surface crusting with high me-
chanical strength could increase surface shear strength and im-
prove the anti-erodibility of surface soil temporally, compared
with the original loss and well aggregated surface structure (Kin-
nell, 2006; Wei, Wu, & Cai, 2015).

Similar correlation was observed between soil detachment rate
and infiltration rate (r o 0, p o 0.01). The correlation was higher
at the low (r ¼ -0.73 to � 0.89, p o 0.01) than at the high rainfall
intensity (r ¼ -0.49 to � 0.73) except for the very severely eroded
soils (E3) showing and opposite trend, indicating that soil loess
was determined by the transport capacity of runoff, especially at
the low rainfall intensity for E0, E1 and E2. Besides, the increased
runoff would facilitate the breakdown of the thin crust and then
percolated through the subsurface soils, which likely leaded to the
fluctuation of rainwater partitioning in the steady state and ac-
celerated erosion on subsurface soils (Ribolzi et al., 2011). There-
fore, topsoil was crucial for soil erosion induced by rainfall. In-
creasing surface cover (such as vegetation and mulch) should be
an imperative way to inhibit the formation of soil crust and im-
prove the crop water availability especially for soils in a well ag-
gregate and loose structure (Dlamini et al., 2011; Tadesse, Sur-
yabhagavan, Sridhar, & Legesse, 2017). However, the very severely
eroded soils with high infiltration capacity were less productive
due to the deficiency of essential elements and structure condi-
tions for crop growth, and hence, different measurements should
be considered in practice.
5. Conclusions

In this study, the effects of erosion induced land degradation and
rainfall intensity on infiltration process in the Ultisols was in-
vestigated by the field plot rainfall simulation experiments. Soil in-
filtration processes, including time to incipient runoff, the decay
coefficient and the steady state infiltration rate, and their variability
were generally larger at the high than at the low rainfall intensity,
and showed an increasing trend with the increased erosion severity.
The dynamic infiltration rate was dominated by rainfall intensity,
mean weight diameter of aggregates at the field moisture content,
soil organic carbon and particle size distribution, and the specific
physicochemical properties that controlling the hydraulic process
varied with rainfall intensity. Increasing surface cover should be
considered for inhibiting soil erosion for soils with well aggregate
and loose structure; but the improvement of soil fertility and struc-
ture for the very severely eroded soils is more imperative. The results
of this study were obtained based on the hypothesis that soil in-
filtration differs significantly between land degradation levels and
rainfall intensities, and other factors for the field rainfall simulation
experiments including slope, bare fallow condition, and antecedent
moisture condition of experiment plots kept as consistent as possible.
Despite these factors, the hydrological response under the dynamic
rainfall intensity also need a further investigation in future studies.
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